Detection and classification of spectrally equivalent processes: a parametric approach

M. Coulon, J. Tourneret, M. Ghogho
{"title":"Detection and classification of spectrally equivalent processes: a parametric approach","authors":"M. Coulon, J. Tourneret, M. Ghogho","doi":"10.1109/HOST.1997.613557","DOIUrl":null,"url":null,"abstract":"The detection of two spectrally equivalent (SE) processes is addressed. The two SE processes are modeled using two SE parametric models: the noisy AR model and the ARMA model. Higher-order statistics are shown to be an efficient tool for the SE process detection problem. A new detector based on the higher-order Yule-Walker matrix singularity is studied. The detector performance is compared in supervised and unsupervised learning. The model order mismatch is then studied.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The detection of two spectrally equivalent (SE) processes is addressed. The two SE processes are modeled using two SE parametric models: the noisy AR model and the ARMA model. Higher-order statistics are shown to be an efficient tool for the SE process detection problem. A new detector based on the higher-order Yule-Walker matrix singularity is studied. The detector performance is compared in supervised and unsupervised learning. The model order mismatch is then studied.
光谱等效过程的检测和分类:一种参数化方法
讨论了两种光谱等效过程的检测。两个SE过程使用两个SE参数模型建模:带噪AR模型和ARMA模型。高阶统计量被证明是SE进程检测问题的有效工具。研究了一种基于高阶Yule-Walker矩阵奇点的探测器。比较了有监督学习和无监督学习下检测器的性能。然后研究了模型顺序失配问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信