CLEMI-Imputation Evaluation

Anthony Chapman, Wei Pang, G. Coghill
{"title":"CLEMI-Imputation Evaluation","authors":"Anthony Chapman, Wei Pang, G. Coghill","doi":"10.1109/SACI.2018.8440981","DOIUrl":null,"url":null,"abstract":"Missing data is challenging enough without the added complexities posed by a lack of research in evaluating imputation. Not only could we potentially increase the impact and validity of studies from many different sectors (research, public and private), we also believe that by creating evaluation software, more researchers may be willing to use and justify using imputation methods. This paper aims to encourage further research for efficient imputation evaluation by defining a framework which could be used to optimise the way we impute datasets prior to data analysis. We propose a framework which uses a prototypical approach to create testing data and machine learning methods to create a new metric for evaluation. Preliminary results are presented which show how, for our dataset, records with less than 40% missingness could be used for analysis, increasing the amount of available data.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8440981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Missing data is challenging enough without the added complexities posed by a lack of research in evaluating imputation. Not only could we potentially increase the impact and validity of studies from many different sectors (research, public and private), we also believe that by creating evaluation software, more researchers may be willing to use and justify using imputation methods. This paper aims to encourage further research for efficient imputation evaluation by defining a framework which could be used to optimise the way we impute datasets prior to data analysis. We propose a framework which uses a prototypical approach to create testing data and machine learning methods to create a new metric for evaluation. Preliminary results are presented which show how, for our dataset, records with less than 40% missingness could be used for analysis, increasing the amount of available data.
CLEMI-Imputation评价
如果不考虑在评估估算方面缺乏研究所带来的额外复杂性,数据缺失就已经足够具有挑战性了。我们不仅可以潜在地增加来自许多不同部门(研究,公共和私人)的研究的影响和有效性,我们还相信,通过创建评估软件,更多的研究人员可能愿意使用和证明使用imputation方法。本文旨在通过定义一个框架来鼓励进一步研究有效的输入评估,该框架可用于优化我们在数据分析之前输入数据集的方式。我们提出了一个框架,该框架使用原型方法来创建测试数据和机器学习方法来创建新的评估指标。初步结果表明,对于我们的数据集,缺失率低于40%的记录可以用于分析,从而增加可用数据的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信