Recognition and classification of animals based on texture features through parallel computing

N. Manohar, S. Subrahmanya, R. Bharathi, Sharath Kumar Y. H, Hemantha Kumar G
{"title":"Recognition and classification of animals based on texture features through parallel computing","authors":"N. Manohar, S. Subrahmanya, R. Bharathi, Sharath Kumar Y. H, Hemantha Kumar G","doi":"10.1109/CCIP.2016.7802872","DOIUrl":null,"url":null,"abstract":"In this work, we proposed an efficient system for animal recognition and classification based on texture features which are obtained from the local appearance and texture of animals. The classification of animals are done by training and subsequently testing two different machine learning techniques, namely k-Nearest Neighbors (k-NN) and Support Vector Machines (SVM). Computer-assisted technique when applied through parallel computing makes the work efficient by reducing the time taken for the task of animal recognition and classification. Here we propose a parallel algorithm for the same. Experimentation is done for about 30 different classes of animals containing more than 3000 images. Among the different classifiers, k-Nearest Neighbor classifiers have achieved a better accuracy.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this work, we proposed an efficient system for animal recognition and classification based on texture features which are obtained from the local appearance and texture of animals. The classification of animals are done by training and subsequently testing two different machine learning techniques, namely k-Nearest Neighbors (k-NN) and Support Vector Machines (SVM). Computer-assisted technique when applied through parallel computing makes the work efficient by reducing the time taken for the task of animal recognition and classification. Here we propose a parallel algorithm for the same. Experimentation is done for about 30 different classes of animals containing more than 3000 images. Among the different classifiers, k-Nearest Neighbor classifiers have achieved a better accuracy.
基于纹理特征的并行计算动物识别与分类
本文提出了一种基于动物局部外观和纹理特征的有效动物识别分类系统。动物的分类是通过训练和随后测试两种不同的机器学习技术来完成的,即k-近邻(k-NN)和支持向量机(SVM)。计算机辅助技术通过并行计算的应用,减少了动物识别和分类任务所花费的时间,从而提高了工作效率。在这里,我们提出了一种并行算法。实验对大约30种不同种类的动物进行,其中包含3000多张图像。在不同的分类器中,k近邻分类器取得了更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信