Hierarchical matching with side information for image classification

Qiang Chen, Zheng Song, Yang Hua, Zhongyang Huang, Shuicheng Yan
{"title":"Hierarchical matching with side information for image classification","authors":"Qiang Chen, Zheng Song, Yang Hua, Zhongyang Huang, Shuicheng Yan","doi":"10.1109/CVPR.2012.6248083","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a hierarchical matching framework with so-called side information for image classification based on bag-of-words representation. Each image is expressed as a bag of orderless pairs, each of which includes a local feature vector encoded over a visual dictionary, and its corresponding side information from priors or contexts. The side information is used for hierarchical clustering of the encoded local features. Then a hierarchical matching kernel is derived as the weighted sum of the similarities over the encoded features pooled within clusters at different levels. Finally the new kernel is integrated with popular machine learning algorithms for classification purpose. This framework is quite general and flexible, other practical and powerful algorithms can be easily designed by using this framework as a template and utilizing particular side information for hierarchical clustering of the encoded local features. To tackle the latent spatial mismatch issues in SPM, we design in this work two exemplar algorithms based on two types of side information: object confidence map and visual saliency map, from object detection priors and within-image contexts respectively. The extensive experiments over the Caltech-UCSD Birds 200, Oxford Flowers 17 and 102, PASCAL VOC 2007, and PASCAL VOC 2010 databases show the state-of-the-art performances from these two exemplar algorithms.","PeriodicalId":177454,"journal":{"name":"2012 IEEE Conference on Computer Vision and Pattern Recognition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2012.6248083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

In this work, we introduce a hierarchical matching framework with so-called side information for image classification based on bag-of-words representation. Each image is expressed as a bag of orderless pairs, each of which includes a local feature vector encoded over a visual dictionary, and its corresponding side information from priors or contexts. The side information is used for hierarchical clustering of the encoded local features. Then a hierarchical matching kernel is derived as the weighted sum of the similarities over the encoded features pooled within clusters at different levels. Finally the new kernel is integrated with popular machine learning algorithms for classification purpose. This framework is quite general and flexible, other practical and powerful algorithms can be easily designed by using this framework as a template and utilizing particular side information for hierarchical clustering of the encoded local features. To tackle the latent spatial mismatch issues in SPM, we design in this work two exemplar algorithms based on two types of side information: object confidence map and visual saliency map, from object detection priors and within-image contexts respectively. The extensive experiments over the Caltech-UCSD Birds 200, Oxford Flowers 17 and 102, PASCAL VOC 2007, and PASCAL VOC 2010 databases show the state-of-the-art performances from these two exemplar algorithms.
基于侧信息的图像分类层次匹配
在这项工作中,我们引入了一个基于词袋表示的图像分类的分层匹配框架和所谓的侧信息。每幅图像都被表示为一袋无序对,每一袋无序对包括一个在视觉字典上编码的局部特征向量,以及来自先验或上下文的相应侧信息。边信息用于编码的局部特征的分层聚类。然后,将不同层次聚类中编码特征的相似度加权和,得到层次匹配核。最后,将新核算法与常用的机器学习算法相结合进行分类。该框架具有较强的通用性和灵活性,以该框架为模板,利用特定的边信息对编码的局部特征进行分层聚类,可以很容易地设计出其他实用而强大的算法。为了解决SPM中潜在的空间不匹配问题,我们在这项工作中设计了两种基于两种侧信息的示例算法:目标置信度图和视觉显著性图,分别来自目标检测先验和图像上下文。在cal理工- ucsd Birds 200、Oxford Flowers 17和102、PASCAL VOC 2007和PASCAL VOC 2010数据库上进行的广泛实验表明,这两种范例算法的性能都是最先进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信