Fuzzy actor-critic learning automaton algorithm for the pursuit-evasion differential game

Ahmad A. Al-Talabi
{"title":"Fuzzy actor-critic learning automaton algorithm for the pursuit-evasion differential game","authors":"Ahmad A. Al-Talabi","doi":"10.1109/CACS.2017.8284278","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient learning algorithm to autonomously tune the parameters of a fuzzy logic controller (FLC) of a mobile robot playing a pursuit-evasion (PE) differential game. The proposed algorithm is a modified version of the fuzzy-actor critic learning (FACL) algorithm, in which both the critic and the actor employ a fuzzy inference systems (FIS). It uses the continuous actor-critic learning Automaton (CACLA) algorithm to tune the parameters of the FIS. It is called fuzzy actor-critic learning Automaton (FACLA) algorithm. FACLA is applied to two versions of the PE games. The first version considers that the pursuer interacts with the evader and will learn its default control strategy and the evader has a fixed strategy. The second version assumes both the pursuer and the evader are learning their default strategies. FACLA is compared through simulation with the FACL, and the PSO-based FLC+QFIS algorithms. Simulation results demonstrate that the performance of FACLA quantified by the learning time outperforms that of the FACL and PSO-based FLC+QFIS algorithms.","PeriodicalId":185753,"journal":{"name":"2017 International Automatic Control Conference (CACS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS.2017.8284278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an efficient learning algorithm to autonomously tune the parameters of a fuzzy logic controller (FLC) of a mobile robot playing a pursuit-evasion (PE) differential game. The proposed algorithm is a modified version of the fuzzy-actor critic learning (FACL) algorithm, in which both the critic and the actor employ a fuzzy inference systems (FIS). It uses the continuous actor-critic learning Automaton (CACLA) algorithm to tune the parameters of the FIS. It is called fuzzy actor-critic learning Automaton (FACLA) algorithm. FACLA is applied to two versions of the PE games. The first version considers that the pursuer interacts with the evader and will learn its default control strategy and the evader has a fixed strategy. The second version assumes both the pursuer and the evader are learning their default strategies. FACLA is compared through simulation with the FACL, and the PSO-based FLC+QFIS algorithms. Simulation results demonstrate that the performance of FACLA quantified by the learning time outperforms that of the FACL and PSO-based FLC+QFIS algorithms.
追求-逃避微分对策的模糊演员-评论家学习自动机算法
本文提出了一种有效的学习算法,用于移动机器人追逃微分博弈的模糊控制器参数的自动整定。提出的算法是模糊行为者批评学习(FACL)算法的改进版本,其中评论家和行为者都使用模糊推理系统(FIS)。它使用连续演员-评论家学习自动机(CACLA)算法来调整FIS的参数。它被称为模糊演员-评论家学习自动机(FACLA)算法。FACLA适用于两个版本的体育游戏。第一个版本认为追赶者与逃避者相互作用,并将学习其默认的控制策略,而逃避者有一个固定的策略。第二个版本假设追求者和逃避者都在学习他们的默认策略。通过仿真将FACLA算法与FACL算法以及基于pso的FLC+QFIS算法进行了比较。仿真结果表明,以学习时间量化的FACLA算法的性能优于基于FACL和基于pso的FLC+QFIS算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信