{"title":"An Interactive Mixed Reality Imaging System for Minimally Invasive Surgeries","authors":"S. El-Seoud, Amr S. Mady, E. Rashed","doi":"10.1145/3220267.3220290","DOIUrl":null,"url":null,"abstract":"In orthopedic surgery, it is important for physicians to completely understand the three-dimensional (3D) anatomical structures for several procedures. With the current revolution in technology in every aspect of our life, mixed reality in the medical field is going to be very useful. However, medicine has a visualization problem hindering how surgeons operate. The surgeons are required to imagine the actual 3D structure of the patient by looking at multiple 2D slices of the patients' body. This process is time consuming, exhausting and requires special skill and experience. Moreover, patients and surgeons are exposed to extra x-ray doses.\n Therefore, it is important to provide the surgeon with a better way to diagnose the patient; a way that is more accurate and locates where the problem is in a faster and more efficient manner. Medical imaging systems usually provide 3D images that can guide interventional clinical procedures. However, it is difficult to map the 3D anatomical structure with real objects. This project investigates and solves this problem by providing a mixed reality technology solution that merges the 3D image with real objects to facilitate the work progress of the surgeon. The proposed solution is an interactive mixed reality (MR) system for minimally invasive surgeries. The system is based on mapping the patient volume scan using computed tomography (CT) or Magnetic Resonance Imaging (MRI) to a 3D model of the patient's body. The rendered model can be used in MR system to view 3D human structures through a set of wearable glasses.","PeriodicalId":177522,"journal":{"name":"International Conference on Software and Information Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Software and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3220267.3220290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In orthopedic surgery, it is important for physicians to completely understand the three-dimensional (3D) anatomical structures for several procedures. With the current revolution in technology in every aspect of our life, mixed reality in the medical field is going to be very useful. However, medicine has a visualization problem hindering how surgeons operate. The surgeons are required to imagine the actual 3D structure of the patient by looking at multiple 2D slices of the patients' body. This process is time consuming, exhausting and requires special skill and experience. Moreover, patients and surgeons are exposed to extra x-ray doses.
Therefore, it is important to provide the surgeon with a better way to diagnose the patient; a way that is more accurate and locates where the problem is in a faster and more efficient manner. Medical imaging systems usually provide 3D images that can guide interventional clinical procedures. However, it is difficult to map the 3D anatomical structure with real objects. This project investigates and solves this problem by providing a mixed reality technology solution that merges the 3D image with real objects to facilitate the work progress of the surgeon. The proposed solution is an interactive mixed reality (MR) system for minimally invasive surgeries. The system is based on mapping the patient volume scan using computed tomography (CT) or Magnetic Resonance Imaging (MRI) to a 3D model of the patient's body. The rendered model can be used in MR system to view 3D human structures through a set of wearable glasses.