Variable interactions in risk factors for dementia

Jim O'Donoghue, M. Roantree, A. Mccarren
{"title":"Variable interactions in risk factors for dementia","authors":"Jim O'Donoghue, M. Roantree, A. Mccarren","doi":"10.1109/RCIS.2016.7549314","DOIUrl":null,"url":null,"abstract":"Current estimates predict 1 in 3 people born today will develop dementia, suggesting a major impact on future population health. As such, research needs to connect specialist clinicians, data scientists and the general public. The In-MINDD project seeks to address this through the provision of a Profiler, a socio-technical information system connecting all three groups. The public interact, providing raw data; data scientists develop and refine prediction algorithms; and clinicians use in-built services to inform decisions. Common across these groups are Risk Factors, used for dementia-free survival prediction. Risk interactions could greatly inform prediction but determining these interactions is a problem underpinned by massive numbers of possible combinations. Our research employs a machine learning approach to automatically select best performing hyperparameters for prediction and learns variable interactions in a non-linear survival-analysis paradigm. Demonstrating effectiveness, we evaluate this approach using longitudinal data with a relatively small sample size.","PeriodicalId":344289,"journal":{"name":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2016.7549314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Current estimates predict 1 in 3 people born today will develop dementia, suggesting a major impact on future population health. As such, research needs to connect specialist clinicians, data scientists and the general public. The In-MINDD project seeks to address this through the provision of a Profiler, a socio-technical information system connecting all three groups. The public interact, providing raw data; data scientists develop and refine prediction algorithms; and clinicians use in-built services to inform decisions. Common across these groups are Risk Factors, used for dementia-free survival prediction. Risk interactions could greatly inform prediction but determining these interactions is a problem underpinned by massive numbers of possible combinations. Our research employs a machine learning approach to automatically select best performing hyperparameters for prediction and learns variable interactions in a non-linear survival-analysis paradigm. Demonstrating effectiveness, we evaluate this approach using longitudinal data with a relatively small sample size.
痴呆危险因素的可变相互作用
目前的估计预测,今天出生的人中有三分之一将患上痴呆症,这表明这将对未来人口健康产生重大影响。因此,研究需要将专业临床医生、数据科学家和公众联系起来。In-MINDD项目试图通过提供一个连接所有三个群体的社会技术信息系统Profiler来解决这个问题。公众互动,提供原始数据;数据科学家开发和完善预测算法;临床医生使用内置服务来为决策提供信息。这些组中常见的是风险因素,用于无痴呆生存预测。风险相互作用可以极大地为预测提供信息,但确定这些相互作用是一个由大量可能的组合支撑的问题。我们的研究采用机器学习方法来自动选择最佳表现的超参数进行预测,并在非线性生存分析范式中学习变量相互作用。为了证明有效性,我们使用相对较小样本量的纵向数据来评估这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信