{"title":"Variable interactions in risk factors for dementia","authors":"Jim O'Donoghue, M. Roantree, A. Mccarren","doi":"10.1109/RCIS.2016.7549314","DOIUrl":null,"url":null,"abstract":"Current estimates predict 1 in 3 people born today will develop dementia, suggesting a major impact on future population health. As such, research needs to connect specialist clinicians, data scientists and the general public. The In-MINDD project seeks to address this through the provision of a Profiler, a socio-technical information system connecting all three groups. The public interact, providing raw data; data scientists develop and refine prediction algorithms; and clinicians use in-built services to inform decisions. Common across these groups are Risk Factors, used for dementia-free survival prediction. Risk interactions could greatly inform prediction but determining these interactions is a problem underpinned by massive numbers of possible combinations. Our research employs a machine learning approach to automatically select best performing hyperparameters for prediction and learns variable interactions in a non-linear survival-analysis paradigm. Demonstrating effectiveness, we evaluate this approach using longitudinal data with a relatively small sample size.","PeriodicalId":344289,"journal":{"name":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2016.7549314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Current estimates predict 1 in 3 people born today will develop dementia, suggesting a major impact on future population health. As such, research needs to connect specialist clinicians, data scientists and the general public. The In-MINDD project seeks to address this through the provision of a Profiler, a socio-technical information system connecting all three groups. The public interact, providing raw data; data scientists develop and refine prediction algorithms; and clinicians use in-built services to inform decisions. Common across these groups are Risk Factors, used for dementia-free survival prediction. Risk interactions could greatly inform prediction but determining these interactions is a problem underpinned by massive numbers of possible combinations. Our research employs a machine learning approach to automatically select best performing hyperparameters for prediction and learns variable interactions in a non-linear survival-analysis paradigm. Demonstrating effectiveness, we evaluate this approach using longitudinal data with a relatively small sample size.