Neural machine translation for sinhala and tamil languages

Pasindu Tennage, Prabath Sandaruwan, Malith Thilakarathne, Achini Herath, Surangika Ranathunga, Sanath Jayasena, G. Dias
{"title":"Neural machine translation for sinhala and tamil languages","authors":"Pasindu Tennage, Prabath Sandaruwan, Malith Thilakarathne, Achini Herath, Surangika Ranathunga, Sanath Jayasena, G. Dias","doi":"10.1109/IALP.2017.8300576","DOIUrl":null,"url":null,"abstract":"Neural Machine Translation (NMT) is becoming the current state of the art machine translation technique. Although NMT is successful for resourceful languages, its applicability in low-resource settings is still debatable. In this paper, we address the task of developing a NMT system for the most widely used language pair in Sri Lanka-Sinhala and Tamil, focusing on the domain of official government documents. We explore the ways of improving NMT using word phrases in a situation where the size of the parallel corpus is considerably small, and empirically show that the resulting models improve our benchmark domain specific Sinhala to Tamil and Tamil to Sinhala translation models by 0.68 and 5.4 BLEU, respectively. The paper also presents an analysis on how NMT performance varies with the amount of word phrases, in order to investigate the effects of word phrases in domain specific NMT.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Neural Machine Translation (NMT) is becoming the current state of the art machine translation technique. Although NMT is successful for resourceful languages, its applicability in low-resource settings is still debatable. In this paper, we address the task of developing a NMT system for the most widely used language pair in Sri Lanka-Sinhala and Tamil, focusing on the domain of official government documents. We explore the ways of improving NMT using word phrases in a situation where the size of the parallel corpus is considerably small, and empirically show that the resulting models improve our benchmark domain specific Sinhala to Tamil and Tamil to Sinhala translation models by 0.68 and 5.4 BLEU, respectively. The paper also presents an analysis on how NMT performance varies with the amount of word phrases, in order to investigate the effects of word phrases in domain specific NMT.
神经机器翻译僧伽罗语和泰米尔语
神经网络机器翻译(NMT)是目前最先进的机器翻译技术。尽管NMT对于资源丰富的语言是成功的,但它在资源匮乏环境中的适用性仍然存在争议。在本文中,我们解决了为斯里兰卡-僧伽罗语和泰米尔语中最广泛使用的语言对开发NMT系统的任务,重点关注官方政府文件领域。我们探索了在并行语料库规模相当小的情况下使用词短语改进NMT的方法,并通过经验表明,所得模型分别将基准领域特定的僧伽罗语到泰米尔语和泰米尔语到僧伽罗语翻译模型提高了0.68和5.4 BLEU。本文还分析了NMT性能随短语数量的变化情况,以研究短语对特定领域NMT的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信