Algorithm comparisons and the significance of population size

K. Malan, A. Engelbrecht
{"title":"Algorithm comparisons and the significance of population size","authors":"K. Malan, A. Engelbrecht","doi":"10.1109/CEC.2008.4630905","DOIUrl":null,"url":null,"abstract":"In studies that compare the performance of population-based optimization algorithms, it is sometimes assumed that the comparison is valid as long as the number of function evaluations is equal, even if the population size differs. This paper shows that such comparisons are invalid. The performance of two algorithms: differential evolution (DE) and global best particle swarm optimization (gbest PSO) are tested on standard benchmark problems with different numbers of individuals/particles (20, 50 and 100). It is shown that there are significance differences in the performance of the same algorithm with the same number of function evaluations, but with different numbers of individuals/particles. Comparisons of different algorithms should therefore always use the same population size for results to be valid.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4630905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In studies that compare the performance of population-based optimization algorithms, it is sometimes assumed that the comparison is valid as long as the number of function evaluations is equal, even if the population size differs. This paper shows that such comparisons are invalid. The performance of two algorithms: differential evolution (DE) and global best particle swarm optimization (gbest PSO) are tested on standard benchmark problems with different numbers of individuals/particles (20, 50 and 100). It is shown that there are significance differences in the performance of the same algorithm with the same number of function evaluations, but with different numbers of individuals/particles. Comparisons of different algorithms should therefore always use the same population size for results to be valid.
算法比较和种群大小的意义
在比较基于种群的优化算法性能的研究中,有时假设只要函数评估的次数相等,即使种群大小不同,比较也是有效的。本文表明这种比较是无效的。在不同个体/粒子数(20、50和100)的标准基准问题上,对差分进化(DE)和全局最佳粒子群优化(gbest PSO)两种算法的性能进行了测试。结果表明,同一算法在函数评估次数相同但个体/粒子数量不同的情况下,其性能存在显著性差异。因此,为了使结果有效,不同算法的比较应该始终使用相同的人口规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信