EDIndex: Enabling Fast Data Queries in Edge Storage Systems

Qiang He, Siyu Tan, Feifei Chen, Xiaolong Xu, Lianyong Qi, X. Hei, Hai Jin, Yun Yang
{"title":"EDIndex: Enabling Fast Data Queries in Edge Storage Systems","authors":"Qiang He, Siyu Tan, Feifei Chen, Xiaolong Xu, Lianyong Qi, X. Hei, Hai Jin, Yun Yang","doi":"10.1145/3539618.3591676","DOIUrl":null,"url":null,"abstract":"In an edge storage system, popular data can be stored on edge servers to enable low-latency data retrieval for nearby users. Suffering from constrained storage capacities, edge servers must process users' data requests collaboratively. For sourcing data, it is essential to find out which edge servers in the system have the requested data. In this paper, we make the first attempt to study this edge data query (EDQ) problem and present EDIndex, a distributed Edge Data Indexing system to enable fast data queries at the edge. First, we introduce a new index structure named Counting Bloom Filter (CBF) tree for facilitating edge data queries. Then, to improve query performance, we enhance EDIndex with a novel index structure named hierarchical Counting Bloom Filter (HCBF) tree. In EDIndex, each edge server maintains an HCBF tree that indexes the data stored on nearby edge servers to facilitate data sourcing between edge servers at the edge. The results of extensive experiments conducted on an edge storage system comprised of 90 edge servers demonstrate that EDIndex 1) takes up to 8.8x less time to answer edge data queries compared with state-of-the-art edge indexing systems; and 2) can be implemented in practice with a high query accuracy at low initialization and maintenance overheads.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In an edge storage system, popular data can be stored on edge servers to enable low-latency data retrieval for nearby users. Suffering from constrained storage capacities, edge servers must process users' data requests collaboratively. For sourcing data, it is essential to find out which edge servers in the system have the requested data. In this paper, we make the first attempt to study this edge data query (EDQ) problem and present EDIndex, a distributed Edge Data Indexing system to enable fast data queries at the edge. First, we introduce a new index structure named Counting Bloom Filter (CBF) tree for facilitating edge data queries. Then, to improve query performance, we enhance EDIndex with a novel index structure named hierarchical Counting Bloom Filter (HCBF) tree. In EDIndex, each edge server maintains an HCBF tree that indexes the data stored on nearby edge servers to facilitate data sourcing between edge servers at the edge. The results of extensive experiments conducted on an edge storage system comprised of 90 edge servers demonstrate that EDIndex 1) takes up to 8.8x less time to answer edge data queries compared with state-of-the-art edge indexing systems; and 2) can be implemented in practice with a high query accuracy at low initialization and maintenance overheads.
EDIndex:在边缘存储系统中实现快速数据查询
在边缘存储系统中,流行的数据可以存储在边缘服务器上,以便为附近的用户提供低延迟的数据检索。由于存储容量有限,边缘服务器必须协作处理用户的数据请求。为了获取数据,必须找出系统中的哪些边缘服务器拥有所请求的数据。本文首次尝试研究边缘数据查询(EDQ)问题,提出了一种分布式边缘数据索引系统EDIndex,以实现边缘数据的快速查询。首先,我们引入了一种新的索引结构,称为计数布隆过滤器(CBF)树,以方便边缘数据查询。然后,为了提高查询性能,我们使用一种新的索引结构-分层计数布隆过滤器(HCBF)树来增强EDIndex。在EDIndex中,每个边缘服务器维护一个HCBF树,该树索引存储在附近边缘服务器上的数据,以促进边缘服务器之间的数据源。在由90个边缘服务器组成的边缘存储系统上进行的大量实验结果表明,与最先进的边缘索引系统相比,EDIndex 1)回答边缘数据查询的时间减少了8.8倍;2)在实践中可以在低初始化和维护开销的情况下实现高查询精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信