Early Detection System for Epileptic Seizures By Using Machine Learning

Mrs. Mayuri Tushar Deshmukh, Dr. Shekhar R Suralkar
{"title":"Early Detection System for Epileptic Seizures By Using Machine Learning","authors":"Mrs. Mayuri Tushar Deshmukh, Dr. Shekhar R Suralkar","doi":"10.46335/ijies.2023.8.5.3","DOIUrl":null,"url":null,"abstract":"-An epileptic seizure is considered the most conspicuous neurological disorder nowadays that can distress to all ages, people.Around 6 decades million people all over the world are travail from epilepsy.Electroencephalograph (EEG) signals are most commonly used for the analysis and detection ofseizures.As EEG signal contains anenormous amount of clatterartifact-included information, so many researchers are trying to support automatic structures for completefeature extraction. This paper provides areview of popular seizure detection methods and performance analysis of the proposed K-Nearest neighbor (KNN), Support Vector Machine(SVM), and Regional Neural Network(RNN) algorithms.","PeriodicalId":286065,"journal":{"name":"International Journal of Innovations in Engineering and Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovations in Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46335/ijies.2023.8.5.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

-An epileptic seizure is considered the most conspicuous neurological disorder nowadays that can distress to all ages, people.Around 6 decades million people all over the world are travail from epilepsy.Electroencephalograph (EEG) signals are most commonly used for the analysis and detection ofseizures.As EEG signal contains anenormous amount of clatterartifact-included information, so many researchers are trying to support automatic structures for completefeature extraction. This paper provides areview of popular seizure detection methods and performance analysis of the proposed K-Nearest neighbor (KNN), Support Vector Machine(SVM), and Regional Neural Network(RNN) algorithms.
基于机器学习的癫痫发作早期检测系统
癫痫病发作被认为是当今最明显的神经系统疾病,它可以困扰所有年龄的人。全世界约有60亿人患有癫痫。脑电图(EEG)信号最常用于分析和检测癫痫发作。由于脑电信号中含有大量杂散伪影信息,因此许多研究者都在尝试支持自动结构来进行完整的特征提取。本文综述了流行的癫痫检测方法,并对所提出的k -最近邻(KNN)、支持向量机(SVM)和区域神经网络(RNN)算法进行了性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信