Secure Motion Verification using the Doppler Effect

Matthias Schäfer, Patrick Leu, Vincent Lenders, J. Schmitt
{"title":"Secure Motion Verification using the Doppler Effect","authors":"Matthias Schäfer, Patrick Leu, Vincent Lenders, J. Schmitt","doi":"10.1145/2939918.2939920","DOIUrl":null,"url":null,"abstract":"Future transportation systems highly rely on the integrity of spatial information provided by their means of transportation such as vehicles and planes. In critical applications (e.g. collision avoidance), tampering with this data can result in life-threatening situations. It is therefore essential for the safety of these systems to securely verify this information. While there is a considerable body of work on the secure verification of locations, movement of nodes has only received little attention in the literature. This paper proposes a new method to securely verify spatial movement of a mobile sender in all dimensions, i.e., position, speed, and direction. Our scheme uses Doppler shift measurements from different locations to verify a prover's motion. We provide formal proof for the security of the scheme and demonstrate its applicability to air traffic communications. Our results indicate that it is possible to reliably verify the motion of aircraft in currently operational systems with an equal error rate of zero.","PeriodicalId":387704,"journal":{"name":"Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939918.2939920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Future transportation systems highly rely on the integrity of spatial information provided by their means of transportation such as vehicles and planes. In critical applications (e.g. collision avoidance), tampering with this data can result in life-threatening situations. It is therefore essential for the safety of these systems to securely verify this information. While there is a considerable body of work on the secure verification of locations, movement of nodes has only received little attention in the literature. This paper proposes a new method to securely verify spatial movement of a mobile sender in all dimensions, i.e., position, speed, and direction. Our scheme uses Doppler shift measurements from different locations to verify a prover's motion. We provide formal proof for the security of the scheme and demonstrate its applicability to air traffic communications. Our results indicate that it is possible to reliably verify the motion of aircraft in currently operational systems with an equal error rate of zero.
使用多普勒效应的安全运动验证
未来的交通系统高度依赖于交通工具(如车辆和飞机)提供的空间信息的完整性。在关键应用(例如防撞)中,篡改这些数据可能会导致危及生命的情况。因此,对于这些系统的安全来说,安全地验证这些信息是至关重要的。虽然在位置的安全验证方面有相当多的工作,但节点的移动在文献中只受到很少的关注。本文提出了一种从位置、速度和方向三个维度安全地验证移动发送者空间运动的新方法。我们的方案使用来自不同位置的多普勒频移测量来验证证明者的运动。对该方案的安全性进行了形式化证明,并论证了其在空中交通通信中的适用性。我们的结果表明,在目前的操作系统中,以零错误率可靠地验证飞机的运动是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信