Sanity check for class-coloring-based evaluation of dimension reduction techniques

Michaël Aupetit
{"title":"Sanity check for class-coloring-based evaluation of dimension reduction techniques","authors":"Michaël Aupetit","doi":"10.1145/2669557.2669578","DOIUrl":null,"url":null,"abstract":"Dimension Reduction techniques used to visualize multidimensional data provide a scatterplot spatialization of data similarities. A widespread way to evaluate the quality of such DR techniques is to use labeled data as a ground truth and to call the reader as a witness to qualify the visualization by looking at class-cluster correlations within the scatterplot. We expose the pitfalls of this evaluation process and we propose a principled solution to guide researchers to improve the way they use this visual evaluation of DR techniques.","PeriodicalId":179584,"journal":{"name":"Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2669557.2669578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Dimension Reduction techniques used to visualize multidimensional data provide a scatterplot spatialization of data similarities. A widespread way to evaluate the quality of such DR techniques is to use labeled data as a ground truth and to call the reader as a witness to qualify the visualization by looking at class-cluster correlations within the scatterplot. We expose the pitfalls of this evaluation process and we propose a principled solution to guide researchers to improve the way they use this visual evaluation of DR techniques.
基于类颜色的降维技术评估的完整性检查
用于可视化多维数据的降维技术提供了数据相似度的散点图空间化。评估此类DR技术质量的一种普遍方法是使用标记数据作为基础事实,并通过查看散点图中的类-簇相关性,将读者称为见证人来验证可视化。我们揭示了这种评估过程的陷阱,并提出了一个原则性的解决方案,以指导研究人员改进他们使用这种DR技术的视觉评估方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信