Real-time video surveillance with self-organizing maps

M. Dahmane, J. Meunier
{"title":"Real-time video surveillance with self-organizing maps","authors":"M. Dahmane, J. Meunier","doi":"10.1109/CRV.2005.65","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach for video surveillance involving (a) moving object detection, (b) tracking and (c) normal/abnormal event recognition. The detection step uses an adaptive background subtraction technique with a shadow elimination model based on the color constancy principle. The target tracking involves a direct and inverse matrix matching process. The novelty of the paper lies mainly in the recognition stage, where we consider local motion properties (flow vector), and more global ones expressed by elliptic Fourier descriptors. From these temporal trajectory characterizations, two Kohonen maps allow to distinguish normal behavior from abnormal or suspicious ones. The classification results show a 94.6 % correct recognition rate with video sequences taken by a low cost webcam. Finally, this algorithm can be fully implemented in real-time.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper, we present an approach for video surveillance involving (a) moving object detection, (b) tracking and (c) normal/abnormal event recognition. The detection step uses an adaptive background subtraction technique with a shadow elimination model based on the color constancy principle. The target tracking involves a direct and inverse matrix matching process. The novelty of the paper lies mainly in the recognition stage, where we consider local motion properties (flow vector), and more global ones expressed by elliptic Fourier descriptors. From these temporal trajectory characterizations, two Kohonen maps allow to distinguish normal behavior from abnormal or suspicious ones. The classification results show a 94.6 % correct recognition rate with video sequences taken by a low cost webcam. Finally, this algorithm can be fully implemented in real-time.
带有自组织地图的实时视频监控
在本文中,我们提出了一种视频监控方法,涉及(a)移动目标检测,(b)跟踪和(c)正常/异常事件识别。检测步骤采用基于颜色恒定原理的阴影消除模型的自适应背景减法技术。目标跟踪涉及到一个正逆矩阵匹配过程。本文的新颖之处主要在于识别阶段,在此阶段我们考虑了局部运动特性(流矢量),以及由椭圆傅里叶描述子表达的更多全局运动特性。从这些时间轨迹特征中,两个Kohonen地图可以区分正常行为与异常或可疑行为。分类结果表明,对低成本网络摄像机拍摄的视频序列,识别率为94.6%。最后,该算法可以完全实现实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信