Lovasz's lemma for the three-dimensional K-level of concave surfaces and its applications

N. Katoh, T. Tokuyama
{"title":"Lovasz's lemma for the three-dimensional K-level of concave surfaces and its applications","authors":"N. Katoh, T. Tokuyama","doi":"10.1109/SFFCS.1999.814610","DOIUrl":null,"url":null,"abstract":"We show that for any line l in space, there are at most k(k+1) tangent planes through l to the k-level of an arrangement of concave surfaces. This is a generalization of L. Lovasz's (1971) lemma, which is a key constituent in the analysis of the complexity of k-level of planes. Our proof is constructive, and finds a family of concave surfaces covering the \"laminated at-most-k level\". As consequences, (1): we have an O((n-k)/sup 2/3/n/sup 2/) upper bound for the complexity of the k-level of n triangle of space, and (2): we can extend the k-set result in space to the k-set of a system of subsets of n points.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We show that for any line l in space, there are at most k(k+1) tangent planes through l to the k-level of an arrangement of concave surfaces. This is a generalization of L. Lovasz's (1971) lemma, which is a key constituent in the analysis of the complexity of k-level of planes. Our proof is constructive, and finds a family of concave surfaces covering the "laminated at-most-k level". As consequences, (1): we have an O((n-k)/sup 2/3/n/sup 2/) upper bound for the complexity of the k-level of n triangle of space, and (2): we can extend the k-set result in space to the k-set of a system of subsets of n points.
凹曲面三维k级的Lovasz引理及其应用
我们证明了对于空间中的任何直线l,在l到凹面排列的k级上,最多有k(k+1)个切平面。这是L. Lovasz(1971)引理的推广,引理是分析k级平面复杂性的关键组成部分。我们的证明是建设性的,并且发现了一个覆盖“层压在最多k级”的凹面族。作为结果,(1):我们有一个O((n-k)/sup 2/3/n/sup 2/)的上界对于空间中n个三角形的k-level复杂度,(2):我们可以将空间中的k-set结果推广到n个点的子集系统的k-set。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信