{"title":"Lovasz's lemma for the three-dimensional K-level of concave surfaces and its applications","authors":"N. Katoh, T. Tokuyama","doi":"10.1109/SFFCS.1999.814610","DOIUrl":null,"url":null,"abstract":"We show that for any line l in space, there are at most k(k+1) tangent planes through l to the k-level of an arrangement of concave surfaces. This is a generalization of L. Lovasz's (1971) lemma, which is a key constituent in the analysis of the complexity of k-level of planes. Our proof is constructive, and finds a family of concave surfaces covering the \"laminated at-most-k level\". As consequences, (1): we have an O((n-k)/sup 2/3/n/sup 2/) upper bound for the complexity of the k-level of n triangle of space, and (2): we can extend the k-set result in space to the k-set of a system of subsets of n points.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We show that for any line l in space, there are at most k(k+1) tangent planes through l to the k-level of an arrangement of concave surfaces. This is a generalization of L. Lovasz's (1971) lemma, which is a key constituent in the analysis of the complexity of k-level of planes. Our proof is constructive, and finds a family of concave surfaces covering the "laminated at-most-k level". As consequences, (1): we have an O((n-k)/sup 2/3/n/sup 2/) upper bound for the complexity of the k-level of n triangle of space, and (2): we can extend the k-set result in space to the k-set of a system of subsets of n points.