A novel K-means based clustering algorithm for big data

Ankita Sinha, P. K. Jana
{"title":"A novel K-means based clustering algorithm for big data","authors":"Ankita Sinha, P. K. Jana","doi":"10.1109/ICACCI.2016.7732323","DOIUrl":null,"url":null,"abstract":"Data generation has seen tremendous growth in the past decade. Managing such huge amount of data is a big challenge. Clustering can serve as a solution, it divides the data into smaller groups based on the level of similarity among the objects. K-Means is one of the most popular and robust clustering algorithm. However, the major drawback of K-Means is to input the number of clusters which is not known in advance particularly for real world data sets. In this paper, we propose a K-Means based clustering algorithm for big data in which we automate the number of clusters to deal with big data. The algorithm is implemented using Spark, a better programming framework than the MapReduce. The proposed algorithm is simulated extensively with large scale synthetic data set as well as real life data on a 4 node cluster. The simulated results demonstrate better performance of the proposed algorithm over the scalable K-Means++ implemented in MLLIB library of Spark.","PeriodicalId":371328,"journal":{"name":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2016.7732323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Data generation has seen tremendous growth in the past decade. Managing such huge amount of data is a big challenge. Clustering can serve as a solution, it divides the data into smaller groups based on the level of similarity among the objects. K-Means is one of the most popular and robust clustering algorithm. However, the major drawback of K-Means is to input the number of clusters which is not known in advance particularly for real world data sets. In this paper, we propose a K-Means based clustering algorithm for big data in which we automate the number of clusters to deal with big data. The algorithm is implemented using Spark, a better programming framework than the MapReduce. The proposed algorithm is simulated extensively with large scale synthetic data set as well as real life data on a 4 node cluster. The simulated results demonstrate better performance of the proposed algorithm over the scalable K-Means++ implemented in MLLIB library of Spark.
一种新的基于k均值的大数据聚类算法
在过去的十年中,数据生成经历了巨大的增长。管理如此庞大的数据是一个巨大的挑战。聚类可以作为一种解决方案,它根据对象之间的相似程度将数据分成更小的组。K-Means是目前最流行的鲁棒聚类算法之一。然而,K-Means的主要缺点是要输入事先不知道的簇的数量,特别是对于现实世界的数据集。在本文中,我们提出了一种基于K-Means的大数据聚类算法,在该算法中,我们自动化了聚类的数量来处理大数据。该算法使用比MapReduce更好的编程框架Spark实现。该算法在大规模合成数据集和4节点集群的实际数据上进行了广泛的仿真。仿真结果表明,该算法比基于Spark MLLIB库实现的可扩展k - means++具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信