А locally adaptive wavelet filtering algorithm for images

Yuri E. Voskoboinikov
{"title":"А locally adaptive wavelet filtering algorithm for images","authors":"Yuri E. Voskoboinikov","doi":"10.17212/2782-2001-2023-1-25-36","DOIUrl":null,"url":null,"abstract":"The algorithms based on the decomposition of a noisy image in an orthogonal basis of wavelet functions have been widely used to filter images (especially contrasting ones) over the past four decades. In this case, most wavelet filtering algorithms are of a threshold nature, namely: the decomposition coefficient smaller in an absolute value of a certain threshold value is reset to zero; otherwise the coefficient undergoes some (most often nonlinear) transformation. A certain (and very significant) drawback of threshold algorithms is that all coefficients of a certain decomposition level are processed with one identical threshold value (i.e., a constant value for all de-composition coefficients). This does not allow taking into account the “individual energy” of each decomposition coefficient for its more optimal processing. Therefore, we propose its own filtering factor for each coefficient, built on the basis of the optimal Wiener filtering and where a filtering parameter is introduced to compensate for incomplete a priori information on the value of the processed decomposition coefficients. In order to select a filtering parameter, a statistical approach has been proposed that makes it possible to estimate the optimal value of this parameter with acceptable accuracy. The performed computational experiment has shown the developed algorithm effectiveness for wavelet filtering of images.","PeriodicalId":292298,"journal":{"name":"Analysis and data processing systems","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and data processing systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/2782-2001-2023-1-25-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The algorithms based on the decomposition of a noisy image in an orthogonal basis of wavelet functions have been widely used to filter images (especially contrasting ones) over the past four decades. In this case, most wavelet filtering algorithms are of a threshold nature, namely: the decomposition coefficient smaller in an absolute value of a certain threshold value is reset to zero; otherwise the coefficient undergoes some (most often nonlinear) transformation. A certain (and very significant) drawback of threshold algorithms is that all coefficients of a certain decomposition level are processed with one identical threshold value (i.e., a constant value for all de-composition coefficients). This does not allow taking into account the “individual energy” of each decomposition coefficient for its more optimal processing. Therefore, we propose its own filtering factor for each coefficient, built on the basis of the optimal Wiener filtering and where a filtering parameter is introduced to compensate for incomplete a priori information on the value of the processed decomposition coefficients. In order to select a filtering parameter, a statistical approach has been proposed that makes it possible to estimate the optimal value of this parameter with acceptable accuracy. The performed computational experiment has shown the developed algorithm effectiveness for wavelet filtering of images.
А图像局部自适应小波滤波算法
在过去的四十年中,基于小波函数正交基对噪声图像进行分解的算法已被广泛用于图像滤波(特别是对比图像)。在这种情况下,大多数小波滤波算法都具有阈值性质,即:在某一阈值的绝对值中分解系数较小的归零;否则,系数会经历一些(通常是非线性的)变换。阈值算法的一个(非常显著的)缺点是,特定分解级别的所有系数都用一个相同的阈值(即所有分解系数的恒定值)进行处理。这就不允许考虑每个分解系数的“单个能量”,以使其得到更优的处理。因此,我们在最优维纳滤波的基础上为每个系数提出了自己的滤波因子,其中引入了一个滤波参数来补偿处理后分解系数值的不完全先验信息。为了选择滤波参数,提出了一种统计方法,使其能够以可接受的精度估计该参数的最优值。计算实验表明了该算法对图像进行小波滤波的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信