Yaning Li, Xuelei Wang, Jie Tan, Chengbao Liu, X. Bai
{"title":"Intelligent integrated coking flue gas indices prediction","authors":"Yaning Li, Xuelei Wang, Jie Tan, Chengbao Liu, X. Bai","doi":"10.1109/SNPD.2017.8022698","DOIUrl":null,"url":null,"abstract":"Focus on the first China domestic coking flue gas desulfurization and denitriation integrated device, in order to solve the problem that the entrance parameters fluctuate and a detection lag exists due to the upstream coking workshop, which is extremely unfavorable to the optimal control of desulfurization and denitriation process. An intelligent integrated prediction model of flue gas SO2 concentration, O2 content and NOx concentration was proposed: the mechanism models of SO2, NOx concentration and O2 content were established according to the principle of material balance and reaction kinetics, respectively. For the prediction error, raw data was pretreated and the auxiliary variables were determined by principal component analysis, in order to improve the training speed and generalization ability of neural network, an improved RBFNN combining optimal stopping principle and dual momentum adaptive learning rate was proposed and used to compensate the error. Based on the practical data of two 55-hole and 6-meter top charging coke ovens in the coking group, the effectiveness and superiority of proposed model and method were verified by simulation via comparison of various models.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Focus on the first China domestic coking flue gas desulfurization and denitriation integrated device, in order to solve the problem that the entrance parameters fluctuate and a detection lag exists due to the upstream coking workshop, which is extremely unfavorable to the optimal control of desulfurization and denitriation process. An intelligent integrated prediction model of flue gas SO2 concentration, O2 content and NOx concentration was proposed: the mechanism models of SO2, NOx concentration and O2 content were established according to the principle of material balance and reaction kinetics, respectively. For the prediction error, raw data was pretreated and the auxiliary variables were determined by principal component analysis, in order to improve the training speed and generalization ability of neural network, an improved RBFNN combining optimal stopping principle and dual momentum adaptive learning rate was proposed and used to compensate the error. Based on the practical data of two 55-hole and 6-meter top charging coke ovens in the coking group, the effectiveness and superiority of proposed model and method were verified by simulation via comparison of various models.