Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

D. Marx, Govind S. Sankar, Philipp Schepper
{"title":"Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)","authors":"D. Marx, Govind S. Sankar, Philipp Schepper","doi":"10.4230/LIPIcs.IPEC.2022.22","DOIUrl":null,"url":null,"abstract":"In the general AntiFactor problem, a graph $G$ is given with a set $X_v\\subseteq \\mathbb{N}$ of forbidden degrees for every vertex $v$ and the task is to find a set $S$ of edges such that the degree of $v$ in $S$ is not in the set $X_v$. Standard techniques (dynamic programming + fast convolution) can be used to show that if $M$ is the largest forbidden degree, then the problem can be solved in time $(M+2)^k\\cdot n^{O(1)}$ if a tree decomposition of width $k$ is given. However, significantly faster algorithms are possible if the sets $X_v$ are sparse: our main algorithmic result shows that if every vertex has at most $x$ forbidden degrees (we call this special case AntiFactor$_x$), then the problem can be solved in time $(x+1)^{O(k)}\\cdot n^{O(1)}$. That is, the AntiFactor$_x$ is fixed-parameter tractable parameterized by treewidth $k$ and the maximum number $x$ of excluded degrees. Our algorithm uses the technique of representative sets, which can be generalized to the optimization version, but (as expected) not to the counting version of the problem. In fact, we show that #AntiFactor$_1$ is already #W[1]-hard parameterized by the width of the given decomposition. Moreover, we show that, unlike for the decision version, the standard dynamic programming algorithm is essentially optimal for the counting version. Formally, for a fixed nonempty set $X$, we denote by $X$-AntiFactor the special case where every vertex $v$ has the same set $X_v=X$ of forbidden degrees. We show the following lower bound for every fixed set $X$: if there is an $\\epsilon>0$ such that #$X$-AntiFactor can be solved in time $(\\max X+2-\\epsilon)^k\\cdot n^{O(1)}$ on a tree decomposition of width $k$, then the Counting Strong Exponential-Time Hypothesis (#SETH) fails.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2022.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the general AntiFactor problem, a graph $G$ is given with a set $X_v\subseteq \mathbb{N}$ of forbidden degrees for every vertex $v$ and the task is to find a set $S$ of edges such that the degree of $v$ in $S$ is not in the set $X_v$. Standard techniques (dynamic programming + fast convolution) can be used to show that if $M$ is the largest forbidden degree, then the problem can be solved in time $(M+2)^k\cdot n^{O(1)}$ if a tree decomposition of width $k$ is given. However, significantly faster algorithms are possible if the sets $X_v$ are sparse: our main algorithmic result shows that if every vertex has at most $x$ forbidden degrees (we call this special case AntiFactor$_x$), then the problem can be solved in time $(x+1)^{O(k)}\cdot n^{O(1)}$. That is, the AntiFactor$_x$ is fixed-parameter tractable parameterized by treewidth $k$ and the maximum number $x$ of excluded degrees. Our algorithm uses the technique of representative sets, which can be generalized to the optimization version, but (as expected) not to the counting version of the problem. In fact, we show that #AntiFactor$_1$ is already #W[1]-hard parameterized by the width of the given decomposition. Moreover, we show that, unlike for the decision version, the standard dynamic programming algorithm is essentially optimal for the counting version. Formally, for a fixed nonempty set $X$, we denote by $X$-AntiFactor the special case where every vertex $v$ has the same set $X_v=X$ of forbidden degrees. We show the following lower bound for every fixed set $X$: if there is an $\epsilon>0$ such that #$X$-AntiFactor can be solved in time $(\max X+2-\epsilon)^k\cdot n^{O(1)}$ on a tree decomposition of width $k$, then the Counting Strong Exponential-Time Hypothesis (#SETH) fails.
反因子是由树宽和列表大小参数化的FPT(但计数很难)
在一般的反因子问题中,给定一个图$G$,每个顶点$v$都有一个禁止度集$X_v\subseteq \mathbb{N}$,任务是找到一个边集$S$,使得$S$中的$v$的度不在$X_v$集合中。可以使用标准技术(动态规划+快速卷积)来证明,如果$M$是最大禁止度,那么如果给出宽度为$k$的树分解,则问题可以及时解决$(M+2)^k\cdot n^{O(1)}$。然而,如果集合$X_v$是稀疏的,显著更快的算法是可能的:我们的主要算法结果表明,如果每个顶点最多有$x$禁止度(我们称之为特殊情况AntiFactor $_x$),那么问题可以及时解决$(x+1)^{O(k)}\cdot n^{O(1)}$。也就是说,AntiFactor $_x$是固定参数可处理的,由树宽$k$和排除度的最大数量$x$参数化。我们的算法使用代表性集技术,它可以推广到优化版本,但(如预期的那样)不能推广到问题的计数版本。事实上,我们证明了#AntiFactor $_1$已经是#W[1]-由给定分解的宽度硬参数化。此外,我们表明,不同于决策版本,标准动态规划算法本质上是最优的计数版本。形式上,对于固定的非空集$X$,我们用$X$ -反因子表示每个顶点$v$都有相同的禁度集$X_v=X$的特殊情况。对于每个固定集合$X$,我们显示了以下下界:如果存在一个$\epsilon>0$,使得# $X$ -反因子可以在时间上解决$(\max X+2-\epsilon)^k\cdot n^{O(1)}$在宽度$k$的树分解上,那么计数强指数时间假设(#SETH)失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信