{"title":"Understanding customer behaviour in urban shopping mall from WiFi logs","authors":"Yuanyi Chen, Jinyu Zhang, M. Guo, Jiannong Cao","doi":"10.1109/PERCOMW.2017.7917519","DOIUrl":null,"url":null,"abstract":"Traditional ways of understanding customer behaviour are mainly based on predominantly field surveys, which are not effective as they require labor-intensive survey. As mobile devices and ubiquitous sensing technologies are becoming more and more pervasive, user-generated data from these platforms are providing rich information to uncover customer preference. In this study, we propose a shop recommendation model for urban shopping mall by exploiting user-generated WiFi logs to learn customer preference. Specifically, the proposed model consists of two phases: 1) offline learning customer's preference from their check-in activities; 2) online recommendation by fusing the learnt preference and temporal influence. We have performed a comprehensive experiment evaluation on a real dataset collected by over 39,000 customers during 7 months, and the experiment results show the proposed recommendation model outperforms state-of-the-art methods.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Traditional ways of understanding customer behaviour are mainly based on predominantly field surveys, which are not effective as they require labor-intensive survey. As mobile devices and ubiquitous sensing technologies are becoming more and more pervasive, user-generated data from these platforms are providing rich information to uncover customer preference. In this study, we propose a shop recommendation model for urban shopping mall by exploiting user-generated WiFi logs to learn customer preference. Specifically, the proposed model consists of two phases: 1) offline learning customer's preference from their check-in activities; 2) online recommendation by fusing the learnt preference and temporal influence. We have performed a comprehensive experiment evaluation on a real dataset collected by over 39,000 customers during 7 months, and the experiment results show the proposed recommendation model outperforms state-of-the-art methods.