Visual insight of spatiotemporal IoT-generated contents

Jun Lee, Kyoung-Sook Kim, Ryong Lee, Sanghwan Lee
{"title":"Visual insight of spatiotemporal IoT-generated contents","authors":"Jun Lee, Kyoung-Sook Kim, Ryong Lee, Sanghwan Lee","doi":"10.1145/3206505.3206575","DOIUrl":null,"url":null,"abstract":"The rapid evolution of the Internet of Things (IoT) and Big Data technology has been generating a large amount and variety of sensing contents, including numeric measured values (e.g., timestamps, geolocations, or sensor logs) and multimedia (e.g., images, audios, and videos). In analyzing and understanding heterogeneous types of IoT-generated contents better, data visualization is an essential component of exploratory data analyses to facilitate information perception and knowledge extraction. This study introduces a holistic approach of storing, processing, and visualizing IoT-generated contents to support context-aware spatiotemporal insight by combining deep learning techniques with a geographical map interface. Visualization is provided under an interactive web-based user interface to help the an efficient visual exploration considering both time and geolocation by easy spatiotemporal query user interface1.","PeriodicalId":330748,"journal":{"name":"Proceedings of the 2018 International Conference on Advanced Visual Interfaces","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206505.3206575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid evolution of the Internet of Things (IoT) and Big Data technology has been generating a large amount and variety of sensing contents, including numeric measured values (e.g., timestamps, geolocations, or sensor logs) and multimedia (e.g., images, audios, and videos). In analyzing and understanding heterogeneous types of IoT-generated contents better, data visualization is an essential component of exploratory data analyses to facilitate information perception and knowledge extraction. This study introduces a holistic approach of storing, processing, and visualizing IoT-generated contents to support context-aware spatiotemporal insight by combining deep learning techniques with a geographical map interface. Visualization is provided under an interactive web-based user interface to help the an efficient visual exploration considering both time and geolocation by easy spatiotemporal query user interface1.
物联网生成内容的时空视觉洞察
物联网(IoT)和大数据技术的快速发展已经产生了大量和各种传感内容,包括数字测量值(如时间戳、地理位置或传感器日志)和多媒体(如图像、音频和视频)。为了更好地分析和理解物联网生成的异构类型内容,数据可视化是探索性数据分析的重要组成部分,有助于信息感知和知识提取。本研究介绍了一种存储、处理和可视化物联网生成内容的整体方法,通过将深度学习技术与地理地图界面相结合,支持上下文感知的时空洞察。可视化是在一个交互式的基于web的用户界面下提供的,通过简单的时空查询用户界面,帮助有效的考虑时间和地理位置的视觉探索1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信