Ryota Yasudo, J. Coutinho, A. Varbanescu, W. Luk, H. Amano, Tobias Becker
{"title":"Performance Estimation for Exascale Reconfigurable Dataflow Platforms","authors":"Ryota Yasudo, J. Coutinho, A. Varbanescu, W. Luk, H. Amano, Tobias Becker","doi":"10.1109/FPT.2018.00062","DOIUrl":null,"url":null,"abstract":"The next generation high-performance computing platforms will need to support exascale computing. A promising path in achieving exascale is to embrace heterogeneity and specialised computing in the form of reconfigurable accelerators. However, assessing the feasibility of heterogeneous exascale systems requires fast and accurate performance prediction. This paper proposes PERKS, a novel performance estimation frame-work for reconfigurable dataflow platforms (RDPs). PERKS uses machine and application parameters to build an analytical model for predicting the performance of multi-accelerator systems. Moreover, model calibration is automatic, making the model flexible and usable for different machine configurations and applications. Our experimental results demonstrate that PERKS can predict the performance of current workloads and RDPs with an accuracy above 95%. We also demonstrate how the modelling scales to exascale workloads and exascale platforms.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The next generation high-performance computing platforms will need to support exascale computing. A promising path in achieving exascale is to embrace heterogeneity and specialised computing in the form of reconfigurable accelerators. However, assessing the feasibility of heterogeneous exascale systems requires fast and accurate performance prediction. This paper proposes PERKS, a novel performance estimation frame-work for reconfigurable dataflow platforms (RDPs). PERKS uses machine and application parameters to build an analytical model for predicting the performance of multi-accelerator systems. Moreover, model calibration is automatic, making the model flexible and usable for different machine configurations and applications. Our experimental results demonstrate that PERKS can predict the performance of current workloads and RDPs with an accuracy above 95%. We also demonstrate how the modelling scales to exascale workloads and exascale platforms.