Taeju Lee, Doojin Jang, Yoontae Jung, Hyuntak Jeon, Soonyoung Hong, Sungmin Han, Jun-Uk Chu, Junghyup Lee, M. Je
{"title":"A neural recording amplifier based on adaptive SNR optimization technique for long-term implantation","authors":"Taeju Lee, Doojin Jang, Yoontae Jung, Hyuntak Jeon, Soonyoung Hong, Sungmin Han, Jun-Uk Chu, Junghyup Lee, M. Je","doi":"10.1109/BIOCAS.2017.8325150","DOIUrl":null,"url":null,"abstract":"Long-term neural recording which can consistently provide good signal-to-noise ratio (SNR) performance over time is important for stable operation of neuroprosthetic systems. This paper presents an analysis for the SNR optimization in a changing environment which causes variations in the tissue-electrode impedance, Zte. Based on the analysis result, a neural recording amplifier (NRA) is developed employing the SNR optimization technique. The NRA can adaptively change its configuration for in situ SNR optimization. The SNR is improved by 4.69% to 23.33% as Zte changes from 1.59 MQ to 31.8 MQ at 1 kHz. The NRA is fabricated in a 0.18-μm standard CMOS process and operates at 1.8-V supply while consuming 1.6 μA It achieves an input-referred noise of 4.67 μVrms when integrated from 1 Hz to 10 kHz, which leads to the NEF of 2.27 and the NEF2VDD of 9.28. The frequency reponse is measured with a high-pass cutoff frequency of 1 Hz and a low-pass cutoff frequency of 10 kHz. The midband gain is set to 40 dB while occupying 0.11 mm2 of a chip area.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Long-term neural recording which can consistently provide good signal-to-noise ratio (SNR) performance over time is important for stable operation of neuroprosthetic systems. This paper presents an analysis for the SNR optimization in a changing environment which causes variations in the tissue-electrode impedance, Zte. Based on the analysis result, a neural recording amplifier (NRA) is developed employing the SNR optimization technique. The NRA can adaptively change its configuration for in situ SNR optimization. The SNR is improved by 4.69% to 23.33% as Zte changes from 1.59 MQ to 31.8 MQ at 1 kHz. The NRA is fabricated in a 0.18-μm standard CMOS process and operates at 1.8-V supply while consuming 1.6 μA It achieves an input-referred noise of 4.67 μVrms when integrated from 1 Hz to 10 kHz, which leads to the NEF of 2.27 and the NEF2VDD of 9.28. The frequency reponse is measured with a high-pass cutoff frequency of 1 Hz and a low-pass cutoff frequency of 10 kHz. The midband gain is set to 40 dB while occupying 0.11 mm2 of a chip area.