Predicting the free calcium oxide content in cement clinker on the basis of rough sets and support vector machines

Yunxing Shu, Qingwei Liu, Bo Ge
{"title":"Predicting the free calcium oxide content in cement clinker on the basis of rough sets and support vector machines","authors":"Yunxing Shu, Qingwei Liu, Bo Ge","doi":"10.1109/ICIEA.2008.4582796","DOIUrl":null,"url":null,"abstract":"In this study, we combined the rough set theory and the fuzzy clustering theory with the support vector machine (SVM) and proposed a rough SVM model to predict the free calcium oxide content in cement clinker. We used the fuzzy clustering method to conduct discretization treatment of our data and applied the rough set theory to conduct attribute reduction so as to reduce the quantity of the input space dimensions of the SVM and further reduce the number of the sample. After that, we conducted training by using the least squares support vector machines (LS-SVM) and determined the optimal parameters of the LS-SVM by means of grid searching and cross validation. Our simulation findings indicate that this model can effectively predict the content of free calcium oxide in cement clinker.","PeriodicalId":309894,"journal":{"name":"2008 3rd IEEE Conference on Industrial Electronics and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2008.4582796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, we combined the rough set theory and the fuzzy clustering theory with the support vector machine (SVM) and proposed a rough SVM model to predict the free calcium oxide content in cement clinker. We used the fuzzy clustering method to conduct discretization treatment of our data and applied the rough set theory to conduct attribute reduction so as to reduce the quantity of the input space dimensions of the SVM and further reduce the number of the sample. After that, we conducted training by using the least squares support vector machines (LS-SVM) and determined the optimal parameters of the LS-SVM by means of grid searching and cross validation. Our simulation findings indicate that this model can effectively predict the content of free calcium oxide in cement clinker.
基于粗糙集和支持向量机的水泥熟料中游离氧化钙含量预测
在本研究中,我们将粗糙集理论和模糊聚类理论与支持向量机(SVM)相结合,提出了一个粗略的支持向量机模型来预测水泥熟料中游离氧化钙含量。我们使用模糊聚类方法对我们的数据进行离散化处理,并应用粗糙集理论进行属性约简,从而减少SVM的输入空间维度的数量,进一步减少样本的数量。之后,我们使用最小二乘支持向量机(LS-SVM)进行训练,并通过网格搜索和交叉验证确定LS-SVM的最优参数。仿真结果表明,该模型能有效地预测水泥熟料中游离氧化钙的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信