Tetris

Brendan L. West, Jian Zhou, R. Dreslinski, J. Fowlkes, O. Kripfgans, C. Chakrabarti, T. Wenisch
{"title":"Tetris","authors":"Brendan L. West, Jian Zhou, R. Dreslinski, J. Fowlkes, O. Kripfgans, C. Chakrabarti, T. Wenisch","doi":"10.1145/3316781.3317921","DOIUrl":null,"url":null,"abstract":"High volume acquisition rates are imperative for medical ultrasound imaging applications, such as 3D elastography and 3D vector flow imaging. Unfortunately, despite recent algorithmic improvements, high-volume-rate imaging remains computationally infeasible on known platforms.In this paper, we propose TETRIS, a novel hardware accelerator for ultrasound beamforming that enables volume acquisition rates up to the physics limits of acoustic propagation delay. Through algorithmic and hardware optimizations, we enable a streaming system design outclassing previously proposed accelerators in performance while lowering hardware complexity and storage requirements. For a representative imaging task, our proposed system generates physics-limited 13,020 volumes per second in a 2. 5W power budget.CCS CONCEPTS• Hardware → Emerging architectures; 3D integrated circuits.;","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

High volume acquisition rates are imperative for medical ultrasound imaging applications, such as 3D elastography and 3D vector flow imaging. Unfortunately, despite recent algorithmic improvements, high-volume-rate imaging remains computationally infeasible on known platforms.In this paper, we propose TETRIS, a novel hardware accelerator for ultrasound beamforming that enables volume acquisition rates up to the physics limits of acoustic propagation delay. Through algorithmic and hardware optimizations, we enable a streaming system design outclassing previously proposed accelerators in performance while lowering hardware complexity and storage requirements. For a representative imaging task, our proposed system generates physics-limited 13,020 volumes per second in a 2. 5W power budget.CCS CONCEPTS• Hardware → Emerging architectures; 3D integrated circuits.;
俄罗斯方块
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信