Modeling variability in hyperspectral imagery using a stochastic compositional approach

D. Stein
{"title":"Modeling variability in hyperspectral imagery using a stochastic compositional approach","authors":"D. Stein","doi":"10.1109/IGARSS.2001.978008","DOIUrl":null,"url":null,"abstract":"Hyperspectral data are typically analyzed using either a pure-pixel statistical classification approach based on a multivariate mixture distribution or a mixed-pixel linear or nonlinear deterministic model. We define a stochastic compositional model that synthesizes these two approaches: an observation is modeled as a constrained linear combination of random vectors. Parameters of the model are estimated using an iterative expectation-maximization maximum likelihood algorithm. The model may be used to estimate fractional abundances of the classes and to estimate the most likely contributor to each observation from each class. Anomaly and likelihood ratio detection algorithms are derived from the model. The linear mixture model and the stochastic compositional model are applied to simulated data and the abundance estimation error and anomaly detection performance are compared.","PeriodicalId":135740,"journal":{"name":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2001.978008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hyperspectral data are typically analyzed using either a pure-pixel statistical classification approach based on a multivariate mixture distribution or a mixed-pixel linear or nonlinear deterministic model. We define a stochastic compositional model that synthesizes these two approaches: an observation is modeled as a constrained linear combination of random vectors. Parameters of the model are estimated using an iterative expectation-maximization maximum likelihood algorithm. The model may be used to estimate fractional abundances of the classes and to estimate the most likely contributor to each observation from each class. Anomaly and likelihood ratio detection algorithms are derived from the model. The linear mixture model and the stochastic compositional model are applied to simulated data and the abundance estimation error and anomaly detection performance are compared.
利用随机合成方法模拟高光谱图像中的变异性
高光谱数据通常使用基于多元混合分布的纯像素统计分类方法或混合像素线性或非线性确定性模型进行分析。我们定义了一个综合了这两种方法的随机组合模型:将观测数据建模为随机向量的约束线性组合。采用迭代期望最大化最大似然算法对模型参数进行估计。该模型可用于估计类别的分数丰度,并估计每个类别中每个观测值的最可能贡献者。在此基础上推导了异常和似然比检测算法。将线性混合模型和随机组合模型应用于模拟数据,比较了丰度估计误差和异常检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信