Image clustering based on hermetian positive definite matrix and radial Jacobi moments

A. Hjouji, M. Jourhmane, J. EL-Mekkaoui, H. Qjidaa, Ahmed El Khalfi
{"title":"Image clustering based on hermetian positive definite matrix and radial Jacobi moments","authors":"A. Hjouji, M. Jourhmane, J. EL-Mekkaoui, H. Qjidaa, Ahmed El Khalfi","doi":"10.1109/ISACV.2018.8354017","DOIUrl":null,"url":null,"abstract":"The main purpose of this work is to present a new 3D image clustering technique based on the radial Jacobi moments to extract the descriptor vectors. We use a distance linked to a Hermitian definite positive matrix to minimize the objective function obtained. The results show that the positive definite matrix to minimize the objective function and significant improvement in terms of recognition accuracy and invariability.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The main purpose of this work is to present a new 3D image clustering technique based on the radial Jacobi moments to extract the descriptor vectors. We use a distance linked to a Hermitian definite positive matrix to minimize the objective function obtained. The results show that the positive definite matrix to minimize the objective function and significant improvement in terms of recognition accuracy and invariability.
基于hermetian正定矩阵和径向雅可比矩的图像聚类
本文的主要目的是提出一种新的基于径向Jacobi矩提取描述子向量的三维图像聚类技术。我们使用连接到厄米定正矩阵的距离来最小化所得到的目标函数。结果表明,正定矩阵使目标函数最小化,在识别精度和不变性方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信