{"title":"Computational Investigation of Cell Migration Behavior in a Confluent Epithelial Monolayer","authors":"Jie Bai, Xiaowei Zeng","doi":"10.32604/cmes.2022.019376","DOIUrl":null,"url":null,"abstract":"Cell migration plays a significant role in many biological activities, yet the physical mechanisms of cell migration are still not well understood. In this study, a continuum physics-based epithelial monolayer model including the intercellular interaction was employed to study the cell migration behavior in a confluent epithelial monolayer at constant cell density. The epithelial cell was modeled as isotropic elastic material. Through finite element simulation, the results revealed that the motile cell was subjected to higher stress than the other jammed cells during the migration process. Cell stiffness was implied to play a significant role in epithelial cell migration behavior. Higher stiffness results in smaller displacement and lower migration speed.","PeriodicalId":398460,"journal":{"name":"Computer Modeling in Engineering & Sciences","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Modeling in Engineering & Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/cmes.2022.019376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cell migration plays a significant role in many biological activities, yet the physical mechanisms of cell migration are still not well understood. In this study, a continuum physics-based epithelial monolayer model including the intercellular interaction was employed to study the cell migration behavior in a confluent epithelial monolayer at constant cell density. The epithelial cell was modeled as isotropic elastic material. Through finite element simulation, the results revealed that the motile cell was subjected to higher stress than the other jammed cells during the migration process. Cell stiffness was implied to play a significant role in epithelial cell migration behavior. Higher stiffness results in smaller displacement and lower migration speed.