A Distributed NWDAF Architecture for Federated Learning in 5G

Youbin Jeon, Hyeonjae Jeong, S. Seo, Taeyun Kim, Haneul Ko, Sangheon Pack
{"title":"A Distributed NWDAF Architecture for Federated Learning in 5G","authors":"Youbin Jeon, Hyeonjae Jeong, S. Seo, Taeyun Kim, Haneul Ko, Sangheon Pack","doi":"10.1109/ICCE53296.2022.9730220","DOIUrl":null,"url":null,"abstract":"For network automation and intelligence in 5G, the network data analytics function (NWDAF) has been introduced as a new network function. However, the existing centralized NWDAF structure can be overloaded if an amount of analytic data are concentrated. In this paper, we introduce a distributed NWDAF structure tailored for federated learning (FL) in 5G. Leaf NWDAFs create local models and root NWDAF construct a global model by aggregating the local models. This structure can guarantee data privacy since local models are created in NF, and can reduce network resource usage because the global model is created by collecting local models.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

For network automation and intelligence in 5G, the network data analytics function (NWDAF) has been introduced as a new network function. However, the existing centralized NWDAF structure can be overloaded if an amount of analytic data are concentrated. In this paper, we introduce a distributed NWDAF structure tailored for federated learning (FL) in 5G. Leaf NWDAFs create local models and root NWDAF construct a global model by aggregating the local models. This structure can guarantee data privacy since local models are created in NF, and can reduce network resource usage because the global model is created by collecting local models.
面向5G联合学习的分布式NWDAF架构
在5G的网络自动化和智能化中,网络数据分析功能(NWDAF)作为新的网络功能被引入。但是,如果大量分析数据集中,现有的集中式NWDAF结构可能会过载。在本文中,我们介绍了一种为5G中的联邦学习(FL)量身定制的分布式NWDAF结构。叶子NWDAF创建局部模型,根NWDAF通过聚合局部模型构建全局模型。由于局部模型是在NF中创建的,因此这种结构可以保证数据的私密性;由于全局模型是通过收集局部模型创建的,因此这种结构可以减少网络资源的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信