Chordal Graphs and Semidefinite Optimization

L. Vandenberghe, Martin S. Andersen
{"title":"Chordal Graphs and Semidefinite Optimization","authors":"L. Vandenberghe, Martin S. Andersen","doi":"10.1561/2400000006","DOIUrl":null,"url":null,"abstract":"Chordal graphs play a central role in techniques for exploiting sparsityin large semidefinite optimization problems and in related convexoptimization problems involving sparse positive semidefinite matrices.Chordal graph properties are also fundamental to several classicalresults in combinatorial optimization, linear algebra, statistics,signal processing, machine learning, and nonlinear optimization. Thissurvey covers the theory and applications of chordal graphs, with anemphasis on algorithms developed in the literature on sparse Choleskyfactorization. These algorithms are formulated as recursions on eliminationtrees, supernodal elimination trees, or clique trees associatedwith the graph. The best known example is the multifrontal Choleskyfactorization algorithm, but similar algorithms can be formulated fora variety of related problems, including the computation of the partialinverse of a sparse positive definite matrix, positive semidefinite andEuclidean distance matrix completion problems, and the evaluation ofgradients and Hessians of logarithmic barriers for cones of sparse positivesemidefinite matrices and their dual cones. The purpose of thesurvey is to show how these techniques can be applied in algorithmsfor sparse semidefinite optimization, and to point out the connectionswith related topics outside semidefinite optimization, such as probabilisticnetworks, matrix completion problems, and partial separabilityin nonlinear optimization.","PeriodicalId":329329,"journal":{"name":"Found. Trends Optim.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"210","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Optim.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2400000006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 210

Abstract

Chordal graphs play a central role in techniques for exploiting sparsityin large semidefinite optimization problems and in related convexoptimization problems involving sparse positive semidefinite matrices.Chordal graph properties are also fundamental to several classicalresults in combinatorial optimization, linear algebra, statistics,signal processing, machine learning, and nonlinear optimization. Thissurvey covers the theory and applications of chordal graphs, with anemphasis on algorithms developed in the literature on sparse Choleskyfactorization. These algorithms are formulated as recursions on eliminationtrees, supernodal elimination trees, or clique trees associatedwith the graph. The best known example is the multifrontal Choleskyfactorization algorithm, but similar algorithms can be formulated fora variety of related problems, including the computation of the partialinverse of a sparse positive definite matrix, positive semidefinite andEuclidean distance matrix completion problems, and the evaluation ofgradients and Hessians of logarithmic barriers for cones of sparse positivesemidefinite matrices and their dual cones. The purpose of thesurvey is to show how these techniques can be applied in algorithmsfor sparse semidefinite optimization, and to point out the connectionswith related topics outside semidefinite optimization, such as probabilisticnetworks, matrix completion problems, and partial separabilityin nonlinear optimization.
弦图与半定优化
弦图在大型半定优化问题和涉及稀疏正半定矩阵的相关凸优化问题中发挥着中心作用。弦图属性也是组合优化,线性代数,统计学,信号处理,机器学习和非线性优化中几个经典结果的基础。本调查涵盖了弦图的理论和应用,重点是在稀疏弦图分解的文献中开发的算法。这些算法被表述为与图相关的消去树、超节点消去树或团树上的递归。最著名的例子是multifrontal Choleskyfactorization算法,但类似的算法可以用于各种相关问题,包括稀疏正定矩阵的部分逆的计算,正半定和欧几里得距离矩阵补全问题,以及稀疏正半定矩阵及其对偶锥的对数障碍梯度和Hessians的评估。调查的目的是展示如何将这些技术应用于稀疏半确定优化算法,并指出与半确定优化之外的相关主题的联系,例如概率网络,矩阵补全问题和非线性优化中的部分可分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信