A probabilistic framework for edge detection and scale selection

D. Marimont, Y. Rubner
{"title":"A probabilistic framework for edge detection and scale selection","authors":"D. Marimont, Y. Rubner","doi":"10.1109/ICCV.1998.710720","DOIUrl":null,"url":null,"abstract":"We devise a statistical framework for edge detection by performing a statistical analysis of zero crossings of the second derivative of an image. This analysis enables us to estimate at each pixel of an image the probability that an edge passes through the pixel. We present a statistical analysis of the the Lindeberg operators that we use to compute image derivatives. We also introduce a confidence probability that tells us how reliable the edge probability is, given the image's noise level and the operator's scale. Combining the edge and confidence probabilities leads to a probabilistic scale selection algorithm. We present the results of experiments on natural images.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

We devise a statistical framework for edge detection by performing a statistical analysis of zero crossings of the second derivative of an image. This analysis enables us to estimate at each pixel of an image the probability that an edge passes through the pixel. We present a statistical analysis of the the Lindeberg operators that we use to compute image derivatives. We also introduce a confidence probability that tells us how reliable the edge probability is, given the image's noise level and the operator's scale. Combining the edge and confidence probabilities leads to a probabilistic scale selection algorithm. We present the results of experiments on natural images.
边缘检测和尺度选择的概率框架
我们通过对图像二阶导数的零交叉进行统计分析,设计了一个边缘检测的统计框架。这种分析使我们能够在图像的每个像素处估计边缘通过像素的概率。我们给出了用于计算图像导数的Lindeberg算子的统计分析。我们还引入了一个置信概率,它告诉我们在给定图像噪声水平和算子尺度的情况下,边缘概率有多可靠。结合边缘概率和置信概率,得到了一种概率尺度选择算法。我们给出了对自然图像的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信