Three-Phase Four Wire High-Frequency Link Converter for Residential DC Grids

Pietro Emiliani, A. Blinov, Giovanni de Carne, Gabriele Arena, D. Vinnikov
{"title":"Three-Phase Four Wire High-Frequency Link Converter for Residential DC Grids","authors":"Pietro Emiliani, A. Blinov, Giovanni de Carne, Gabriele Arena, D. Vinnikov","doi":"10.1109/CPE-POWERENG58103.2023.10227416","DOIUrl":null,"url":null,"abstract":"There is increasing penetration of dc native renewable technologies, such as batteries and photovoltaics in the distribution grid. These renewable technologies can be interconnected with dc microgrids, which in turn often have a bidirectional connection with the ac distribution grid to enable energy exchange. For safety reasons, this connection is often galvanically isolated with a transformer. This paper presents a single stage high frequency link converter, based on an indirect matrix converter. A three leg four wire configuration is proposed to be able to operate in unbalanced conditions and provide various ancillary grid services. A digital controller is developed to control the grid currents and eliminate distortion at the zero crossing of the matrix converter. The results are verified with a PSIM model.","PeriodicalId":315989,"journal":{"name":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is increasing penetration of dc native renewable technologies, such as batteries and photovoltaics in the distribution grid. These renewable technologies can be interconnected with dc microgrids, which in turn often have a bidirectional connection with the ac distribution grid to enable energy exchange. For safety reasons, this connection is often galvanically isolated with a transformer. This paper presents a single stage high frequency link converter, based on an indirect matrix converter. A three leg four wire configuration is proposed to be able to operate in unbalanced conditions and provide various ancillary grid services. A digital controller is developed to control the grid currents and eliminate distortion at the zero crossing of the matrix converter. The results are verified with a PSIM model.
住宅直流电网用三相四线高频链路变换器
在配电网中,诸如电池和光伏等直流原生可再生技术的渗透程度越来越高。这些可再生能源技术可以与直流微电网互联,而直流微电网又通常与交流配电网双向连接,以实现能源交换。出于安全考虑,这种连接通常用变压器进行电隔离。本文提出了一种基于间接矩阵变换器的单级高频链路变换器。提出了一种能够在不平衡条件下运行并提供各种辅助电网服务的三腿四线配置。设计了一种数字控制器来控制栅极电流,消除矩阵变换器过零处的畸变。用PSIM模型对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信