A novel Bayesian method for variable selection and estimation in binary quantile regression

Mai Dao, Min Wang, Souparno Ghosh
{"title":"A novel Bayesian method for variable selection and estimation in binary quantile regression","authors":"Mai Dao, Min Wang, Souparno Ghosh","doi":"10.1002/sam.11591","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a Bayesian hierarchical model and associated computation strategy for simultaneously conducting parameter estimation and variable selection in binary quantile regression. We specify customary asymmetric Laplace distribution on the error term and assign quantile‐dependent priors on the regression coefficients and a binary vector to identify the model configuration. Thanks to the normal‐exponential mixture representation of the asymmetric Laplace distribution, we proceed to develop a novel three‐stage computational scheme starting with an expectation–maximization algorithm and then the Gibbs sampler followed by an importance re‐weighting step to draw nearly independent Markov chain Monte Carlo samples from the full posterior distributions of the unknown parameters. Simulation studies are conducted to compare the performance of the proposed Bayesian method with that of several existing ones in the literature. Finally, two real‐data applications are provided for illustrative purposes.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a Bayesian hierarchical model and associated computation strategy for simultaneously conducting parameter estimation and variable selection in binary quantile regression. We specify customary asymmetric Laplace distribution on the error term and assign quantile‐dependent priors on the regression coefficients and a binary vector to identify the model configuration. Thanks to the normal‐exponential mixture representation of the asymmetric Laplace distribution, we proceed to develop a novel three‐stage computational scheme starting with an expectation–maximization algorithm and then the Gibbs sampler followed by an importance re‐weighting step to draw nearly independent Markov chain Monte Carlo samples from the full posterior distributions of the unknown parameters. Simulation studies are conducted to compare the performance of the proposed Bayesian method with that of several existing ones in the literature. Finally, two real‐data applications are provided for illustrative purposes.
二元分位数回归中变量选择与估计的贝叶斯新方法
本文提出了一种贝叶斯层次模型和相应的计算策略,用于同时进行二元分位数回归的参数估计和变量选择。我们在误差项上指定习惯的非对称拉普拉斯分布,并在回归系数和二元向量上分配分位数相关的先验,以识别模型配置。由于非对称拉普拉斯分布的正态-指数混合表示,我们继续开发一种新的三阶段计算方案,从期望最大化算法开始,然后是Gibbs采样器,然后是一个重要的重加权步骤,从未知参数的完全后验分布中提取几乎独立的马尔可夫链蒙特卡罗样本。通过仿真研究,将所提出的贝叶斯方法与文献中已有的几种贝叶斯方法的性能进行了比较。最后,为了说明目的,提供了两个实际数据应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信