Adaptive genetic algorithms-modeling and convergence

Alexandru Agapie
{"title":"Adaptive genetic algorithms-modeling and convergence","authors":"Alexandru Agapie","doi":"10.1109/CEC.1999.782005","DOIUrl":null,"url":null,"abstract":"The paper presents a new mathematical analysis of genetic algorithms (GAs); we propose the use of random systems with complete connections (RSCC), a non-trivial extension of the Markovian dependence, accounting for a complete, rather than recent, history of a stochastic evolution. As far as we know, this is the first theoretical modeling of an adaptive GA. First we introduce the RSCC model of an p/sub m/-adaptive GA, then we prove that a \"classification of states\" is still valid for our model, and finally we derive a convergence condition for the algorithm.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.782005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper presents a new mathematical analysis of genetic algorithms (GAs); we propose the use of random systems with complete connections (RSCC), a non-trivial extension of the Markovian dependence, accounting for a complete, rather than recent, history of a stochastic evolution. As far as we know, this is the first theoretical modeling of an adaptive GA. First we introduce the RSCC model of an p/sub m/-adaptive GA, then we prove that a "classification of states" is still valid for our model, and finally we derive a convergence condition for the algorithm.
自适应遗传算法——建模与收敛
本文提出了一种新的遗传算法的数学分析方法;我们建议使用具有完全连接的随机系统(RSCC),这是马尔可夫依赖的非平凡扩展,可以解释一个完整的,而不是最近的随机进化历史。据我们所知,这是自适应遗传算法的第一个理论建模。首先介绍了p/sub m/-自适应遗传算法的RSCC模型,然后证明了该模型的“状态分类”仍然是有效的,最后给出了该算法的收敛条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信