Effective Channel Planning for IEEE 802.11 Networks as a Plane Tessellation Problem. Part 2. Method of Best Channel Configuration Selection and Solutions for a Low Number of Channels
{"title":"Effective Channel Planning for IEEE 802.11 Networks as a Plane Tessellation Problem. Part 2. Method of Best Channel Configuration Selection and Solutions for a Low Number of Channels","authors":"A. Vikulov","doi":"10.31854/1813-324x-2022-8-3-27-36","DOIUrl":null,"url":null,"abstract":"The assignation a particular channel to an access point in large, distributed IEEE 802.11 networks can present a complex challenge. Although the channel can be assigned automatically by the network controller in some cases based on specified settings, it may require human attention when this is not possible. In order to select a frequency plan, it is necessary to understand the advantages of a particular channel configuration and evaluate the resulting effects of adjacent-channel interference at the design stage. A similar problem may arise during WLAN troubleshooting. In this paper, we consider distributed flat wireless networks as regular structures in plane tessellation and propose a method for finding the best channel configurations for the most efficient channel planning of IEEE 802.11 networks, which take the specifics of spectrum use in these networks into account. In addition, we consider the simplest possible solutions for three- and four- channel frequency plans.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2022-8-3-27-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The assignation a particular channel to an access point in large, distributed IEEE 802.11 networks can present a complex challenge. Although the channel can be assigned automatically by the network controller in some cases based on specified settings, it may require human attention when this is not possible. In order to select a frequency plan, it is necessary to understand the advantages of a particular channel configuration and evaluate the resulting effects of adjacent-channel interference at the design stage. A similar problem may arise during WLAN troubleshooting. In this paper, we consider distributed flat wireless networks as regular structures in plane tessellation and propose a method for finding the best channel configurations for the most efficient channel planning of IEEE 802.11 networks, which take the specifics of spectrum use in these networks into account. In addition, we consider the simplest possible solutions for three- and four- channel frequency plans.