Performance Analysis of Mixed MIMO-RF/MIMO-FSO DF Relaying Using Globally Coupled Low Density Parity Check (GC-LDPC) Codes and Diversity Techniques

I. Gueye, I. Diop, I. Dioum, Papis Ndiaye
{"title":"Performance Analysis of Mixed MIMO-RF/MIMO-FSO DF Relaying Using Globally Coupled Low Density Parity Check (GC-LDPC) Codes and Diversity Techniques","authors":"I. Gueye, I. Diop, I. Dioum, Papis Ndiaye","doi":"10.1109/icicn52636.2021.9673895","DOIUrl":null,"url":null,"abstract":"This article focuses on the performance analysis of cooperative systems hybridizing MIMO-RF/MIMO-FSO and error correcting codes including GC-LDPC codes in FSOs. In this double-hop relay system composed of links with several inputs and multiple outputs at radio frequency and with multiple inputs and multiple outputs in FSO. In this system the source transmits the information to the relay by RF links, the relay processes the information received from the source and retransmits it to the destination by FSO links. To decode the data we used two-phase local-global decoding and to eliminate interference between source-relay links and relay-destination links we use interference alignment (IA) technique. It is also assumed that the source-relay link undergoes Rayleigh fading, while the relay-destination links undergo Gamma-Gamma model fading. Using DF relay technology, hybrid MIMO-RF/MIMO-FSO systems combine the advantages of RF and FSO communication technologies. The use of hybrid MIMO- RF/MIMO-FSO cooperative transmission systems improves network reliability and transmission. In this work, we carried out a simulation study on the distribution of the total transmission power at the source and the relay level to understand the best allocations between the source and the relay in order to guarantee a good quality of reception of the data transmitted to the destination. This work also presents studies on the different combimaision techniques. The results of our simulations show that the MIMO-RF/MIMO-FSO system based on GC-LDPC codes gives better performance compared to MIMO-RF/FSO and RF/FSO systems based on the same codes but also with conventional systems without the use of codes.","PeriodicalId":231379,"journal":{"name":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicn52636.2021.9673895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on the performance analysis of cooperative systems hybridizing MIMO-RF/MIMO-FSO and error correcting codes including GC-LDPC codes in FSOs. In this double-hop relay system composed of links with several inputs and multiple outputs at radio frequency and with multiple inputs and multiple outputs in FSO. In this system the source transmits the information to the relay by RF links, the relay processes the information received from the source and retransmits it to the destination by FSO links. To decode the data we used two-phase local-global decoding and to eliminate interference between source-relay links and relay-destination links we use interference alignment (IA) technique. It is also assumed that the source-relay link undergoes Rayleigh fading, while the relay-destination links undergo Gamma-Gamma model fading. Using DF relay technology, hybrid MIMO-RF/MIMO-FSO systems combine the advantages of RF and FSO communication technologies. The use of hybrid MIMO- RF/MIMO-FSO cooperative transmission systems improves network reliability and transmission. In this work, we carried out a simulation study on the distribution of the total transmission power at the source and the relay level to understand the best allocations between the source and the relay in order to guarantee a good quality of reception of the data transmitted to the destination. This work also presents studies on the different combimaision techniques. The results of our simulations show that the MIMO-RF/MIMO-FSO system based on GC-LDPC codes gives better performance compared to MIMO-RF/FSO and RF/FSO systems based on the same codes but also with conventional systems without the use of codes.
采用全局耦合低密度奇偶校验码和分集技术的MIMO-RF/MIMO-FSO - DF混合中继性能分析
本文重点分析了MIMO-RF/MIMO-FSO与fso中GC-LDPC码等纠错码相结合的协同系统的性能。在这种双跳中继系统中,在无线电频率上有多个输入和多个输出链路,在FSO中有多个输入和多个输出链路。在该系统中,源端通过射频链路将信息发送到中继端,中继端对从源端接收到的信息进行处理后,通过FSO链路将信息转发到目的端。为了解码数据,我们使用了两阶段局部-全局解码,为了消除源-中继链路和中继-目的地链路之间的干扰,我们使用了干扰对齐(IA)技术。还假设源中继链路经历瑞利衰落,而中继-目的链路经历Gamma-Gamma模型衰落。使用DF中继技术,混合MIMO-RF/MIMO-FSO系统结合了RF和FSO通信技术的优点。混合MIMO- RF/MIMO- fso协同传输系统的使用提高了网络的可靠性和传输能力。在这项工作中,我们对总发射功率在源和中继级的分布进行了仿真研究,以了解源和中继之间的最佳分配,以保证传输到目的地的数据的良好接收质量。本文还介绍了不同组合技术的研究。仿真结果表明,基于GC-LDPC编码的MIMO-RF/MIMO-FSO系统比基于相同编码的MIMO-RF/FSO系统和基于相同编码的RF/FSO系统具有更好的性能,也比不使用编码的传统系统具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信