Neural Adaptive Dynamic Surface Control of PMSMs with Input Saturation and output constraint

Dongchao Lv, Shaobo Li, T. Zhang, Fengbin Wu, Menghan Li, Chao Zheng
{"title":"Neural Adaptive Dynamic Surface Control of PMSMs with Input Saturation and output constraint","authors":"Dongchao Lv, Shaobo Li, T. Zhang, Fengbin Wu, Menghan Li, Chao Zheng","doi":"10.1109/CAC57257.2022.10055960","DOIUrl":null,"url":null,"abstract":"This paper discusses an adaptive neural tracking control of permanent magnet synchronous motors subject to input saturation and output constraint. The difficulty is to consider output constraints and input saturation. Firstly, the adaptive dynamic surface control design process is systematized by embedding many existing tools into the classical backstepping framework. Then, a nonlinear transformation function is proposed to transform the output constrained system into an unconstrained system. Furthermore, using radial basis function neural networks to Process the unknown terms, the Gaussian error function is utilized to describe the continuously differentiable asymmetric saturation nonlinearity. It turns out that all signals in the proposed scheme are bounded. The simulation results are provided to further show the feasibility of the proposed method.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses an adaptive neural tracking control of permanent magnet synchronous motors subject to input saturation and output constraint. The difficulty is to consider output constraints and input saturation. Firstly, the adaptive dynamic surface control design process is systematized by embedding many existing tools into the classical backstepping framework. Then, a nonlinear transformation function is proposed to transform the output constrained system into an unconstrained system. Furthermore, using radial basis function neural networks to Process the unknown terms, the Gaussian error function is utilized to describe the continuously differentiable asymmetric saturation nonlinearity. It turns out that all signals in the proposed scheme are bounded. The simulation results are provided to further show the feasibility of the proposed method.
带输入饱和和输出约束的永磁同步电机神经网络自适应动态曲面控制
讨论了输入饱和和输出约束下永磁同步电动机的自适应神经跟踪控制。难点在于考虑输出约束和输入饱和。首先,通过在经典的回溯框架中嵌入许多现有工具,将自适应动态曲面控制设计过程系统化。然后,利用非线性变换函数将输出约束系统转化为无约束系统。利用径向基函数神经网络对未知项进行处理,利用高斯误差函数对连续可微的非对称饱和非线性进行描述。结果表明,该方案中的所有信号都是有界的。仿真结果进一步证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信