Plug-And-Play Image Reconstruction Meets Stochastic Variance-Reduced Gradient Methods

Vincent Monardo, A. Iyer, S. Donegan, M. Graef, Yuejie Chi
{"title":"Plug-And-Play Image Reconstruction Meets Stochastic Variance-Reduced Gradient Methods","authors":"Vincent Monardo, A. Iyer, S. Donegan, M. Graef, Yuejie Chi","doi":"10.1109/ICIP42928.2021.9506021","DOIUrl":null,"url":null,"abstract":"Plug-and-play (PnP) methods have recently emerged as a powerful framework for image reconstruction that can flexibly combine different physics-based observation models with data-driven image priors in the form of denoisers, and achieve state-of-the-art image reconstruction quality in many applications. In this paper, we aim to further improve the computational efficacy of PnP methods by designing a new algorithm that makes use of stochastic variance-reduced gradients (SVRG), a nascent idea to accelerate runtime in stochastic optimization. Compared with existing PnP methods using batch gradients or stochastic gradients, the new algorithm, called PnP-SVRG, achieves comparable or better accuracy of image reconstruction at a much faster computational speed. Extensive numerical experiments are provided to demonstrate the benefits of the proposed algorithm through the application of compressive imaging using partial Fourier measurements in conjunction with a wide variety of popular image denoisers.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Plug-and-play (PnP) methods have recently emerged as a powerful framework for image reconstruction that can flexibly combine different physics-based observation models with data-driven image priors in the form of denoisers, and achieve state-of-the-art image reconstruction quality in many applications. In this paper, we aim to further improve the computational efficacy of PnP methods by designing a new algorithm that makes use of stochastic variance-reduced gradients (SVRG), a nascent idea to accelerate runtime in stochastic optimization. Compared with existing PnP methods using batch gradients or stochastic gradients, the new algorithm, called PnP-SVRG, achieves comparable or better accuracy of image reconstruction at a much faster computational speed. Extensive numerical experiments are provided to demonstrate the benefits of the proposed algorithm through the application of compressive imaging using partial Fourier measurements in conjunction with a wide variety of popular image denoisers.
即插即用图像重建满足随机方差减少梯度方法
即插即用(PnP)方法最近成为一种强大的图像重建框架,它可以灵活地将不同的基于物理的观测模型与数据驱动的图像先验以去噪的形式结合起来,并在许多应用中实现最先进的图像重建质量。为了进一步提高PnP方法的计算效率,我们设计了一种新的算法,该算法利用随机方差减少梯度(SVRG)来加速随机优化的运行时间。与现有的批处理梯度或随机梯度的PnP方法相比,新算法PnP- svrg以更快的计算速度实现了相当或更好的图像重建精度。广泛的数值实验提供了证明通过使用部分傅立叶测量结合各种流行的图像去噪压缩成像的应用所提出的算法的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信