Two-View Motion Segmentation from Linear Programming Relaxation

Hongdong Li
{"title":"Two-View Motion Segmentation from Linear Programming Relaxation","authors":"Hongdong Li","doi":"10.1109/CVPR.2007.382975","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of multibody motion segmentation, which is an important, but challenging problem due to its well-known chicken-and-egg-type recursive character. We propose a new mixture-of-fundamental-matrices model to describe the multibody motions from two views. Based on the maximum likelihood estimation, in conjunction with a random sampling scheme, we show that the problem can be naturally formulated as a linear programming (LP) problem. Consequently, the motion segmentation problem can be solved efficiently by linear program relaxation. Experiments demonstrate that: without assuming the actual number of motions our method produces accurate segmentation result. This LP formulation has also other advantages, such as easy to handle outliers and easy to enforce prior knowledge etc.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.382975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

This paper studies the problem of multibody motion segmentation, which is an important, but challenging problem due to its well-known chicken-and-egg-type recursive character. We propose a new mixture-of-fundamental-matrices model to describe the multibody motions from two views. Based on the maximum likelihood estimation, in conjunction with a random sampling scheme, we show that the problem can be naturally formulated as a linear programming (LP) problem. Consequently, the motion segmentation problem can be solved efficiently by linear program relaxation. Experiments demonstrate that: without assuming the actual number of motions our method produces accurate segmentation result. This LP formulation has also other advantages, such as easy to handle outliers and easy to enforce prior knowledge etc.
基于线性规划松弛的二视图运动分割
本文研究了多体运动分割问题,这是一个重要而又具有挑战性的问题,因为它具有众所周知的鸡和蛋的递归性质。我们提出了一个新的混合基本矩阵模型,从两个角度来描述多体运动。基于极大似然估计,结合随机抽样方案,我们证明了该问题可以自然地表述为线性规划(LP)问题。因此,采用线性规划松弛法可以有效地解决运动分割问题。实验表明:在不假设实际运动数的情况下,该方法可以得到准确的分割结果。该LP公式还具有易于处理异常值和易于执行先验知识等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信