An FPGA-based Parallel Hardware Architecture for Real-Time Face Detection Using a Face Certainty Map

S. Jin, Dongkyun Kim, T. Nguyen, Bongjin Jun, Daijin Kim, J. Jeon
{"title":"An FPGA-based Parallel Hardware Architecture for Real-Time Face Detection Using a Face Certainty Map","authors":"S. Jin, Dongkyun Kim, T. Nguyen, Bongjin Jun, Daijin Kim, J. Jeon","doi":"10.1109/ASAP.2009.36","DOIUrl":null,"url":null,"abstract":"This paper presents an FPGA-based parallel hardware architecture for real-time face detection. An image pyramid with twenty depth levels is generated using the input image. For these scaled-down images, a local binary pattern transform and feature evaluation are performed in parallel by using the proposed block RAM-based window processing architecture. By sharing the feature look-up tables between two corresponding scaled-down images, we can reduce the use of routing resources by half. For prototyping and evaluation purposes, the hardware architecture was integrated into a Virtex-5 FPGA. The experimental result shows around 300 frames per second speed performance for processing standard VGA (640×480×8) images. In addition, the throughput of the implementation can be adjusted in proportion to the frame rate of the camera, by synchronizing each individual module with the pixel sampling clock.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents an FPGA-based parallel hardware architecture for real-time face detection. An image pyramid with twenty depth levels is generated using the input image. For these scaled-down images, a local binary pattern transform and feature evaluation are performed in parallel by using the proposed block RAM-based window processing architecture. By sharing the feature look-up tables between two corresponding scaled-down images, we can reduce the use of routing resources by half. For prototyping and evaluation purposes, the hardware architecture was integrated into a Virtex-5 FPGA. The experimental result shows around 300 frames per second speed performance for processing standard VGA (640×480×8) images. In addition, the throughput of the implementation can be adjusted in proportion to the frame rate of the camera, by synchronizing each individual module with the pixel sampling clock.
一种基于fpga的并行硬件结构,用于人脸确定性地图的实时人脸检测
提出了一种基于fpga的实时人脸检测并行硬件结构。使用输入图像生成具有20个深度级别的图像金字塔。对于这些缩小后的图像,采用所提出的基于块ram的窗口处理架构并行进行局部二值模式变换和特征评估。通过在两个相应的按比例缩小的图像之间共享特征查找表,我们可以将路由资源的使用减少一半。为了原型和评估的目的,硬件架构被集成到一个Virtex-5 FPGA中。实验结果显示,处理标准VGA (640×480×8)图像的速度约为每秒300帧。此外,通过将每个单独的模块与像素采样时钟同步,可以根据相机的帧速率按比例调整实现的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信