DBtrends: Exploring Query Logs for Ranking RDF Data

Edgard Marx, A. Zaveri, Diego Moussallem, Sandro Rautenberg
{"title":"DBtrends: Exploring Query Logs for Ranking RDF Data","authors":"Edgard Marx, A. Zaveri, Diego Moussallem, Sandro Rautenberg","doi":"10.1145/2993318.2993322","DOIUrl":null,"url":null,"abstract":"Many ranking methods have been proposed for RDF data. These methods often use the structure behind the data to measure its importance. Recently, some of these methods have started to explore information from other sources such as the Wikipedia page graph for better ranking RDF data. In this work, we propose DBtrends, a ranking function based on query logs. We extensively evaluate the application of different ranking functions for entities, classes, and properties across two different countries as well as their combination. Thereafter, we propose MIXED-RANK, a ranking function that combines DBtrends with the best-evaluated entity ranking function. We show that: (i) MIXED-RANK outperforms state-of-the-art entity ranking functions, and; (ii) query logs can be used to improve RDF ranking functions.","PeriodicalId":177013,"journal":{"name":"Proceedings of the 12th International Conference on Semantic Systems","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993318.2993322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Many ranking methods have been proposed for RDF data. These methods often use the structure behind the data to measure its importance. Recently, some of these methods have started to explore information from other sources such as the Wikipedia page graph for better ranking RDF data. In this work, we propose DBtrends, a ranking function based on query logs. We extensively evaluate the application of different ranking functions for entities, classes, and properties across two different countries as well as their combination. Thereafter, we propose MIXED-RANK, a ranking function that combines DBtrends with the best-evaluated entity ranking function. We show that: (i) MIXED-RANK outperforms state-of-the-art entity ranking functions, and; (ii) query logs can be used to improve RDF ranking functions.
DBtrends:探索RDF数据排序的查询日志
对于RDF数据,已经提出了许多排序方法。这些方法通常使用数据背后的结构来衡量其重要性。最近,其中一些方法已经开始从其他来源(如Wikipedia页面图)探索信息,以便更好地对RDF数据进行排序。在这项工作中,我们提出了DBtrends,一个基于查询日志的排序函数。我们广泛评估了两个不同国家的实体、类和属性的不同排名函数的应用,以及它们的组合。此后,我们提出了混合排名函数,这是一个将DBtrends与最佳评估实体排名函数相结合的排名函数。我们表明:(i)混合排名优于最先进的实体排名函数,并且;(ii)查询日志可用于改进RDF排序功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信