A comparison of action selection methods for implicit policy method reinforcement learning in continuous action-space

Barry D. Nichols
{"title":"A comparison of action selection methods for implicit policy method reinforcement learning in continuous action-space","authors":"Barry D. Nichols","doi":"10.1109/IJCNN.2016.7727688","DOIUrl":null,"url":null,"abstract":"In this paper I investigate methods of applying reinforcement learning to continuous state- and action-space problems without a policy function. I compare the performance of four methods, one of which is the discretisation of the action-space, and the other three are optimisation techniques applied to finding the greedy action without discretisation. The optimisation methods I apply are gradient descent, Nelder-Mead and Newton's Method. The action selection methods are applied in conjunction with the SARSA algorithm, with a multilayer perceptron utilized for the approximation of the value function. The approaches are applied to two simulated continuous state- and action-space control problems: Cart-Pole and double Cart-Pole. The results are compared both in terms of action selection time and the number of trials required to train on the benchmark problems.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper I investigate methods of applying reinforcement learning to continuous state- and action-space problems without a policy function. I compare the performance of four methods, one of which is the discretisation of the action-space, and the other three are optimisation techniques applied to finding the greedy action without discretisation. The optimisation methods I apply are gradient descent, Nelder-Mead and Newton's Method. The action selection methods are applied in conjunction with the SARSA algorithm, with a multilayer perceptron utilized for the approximation of the value function. The approaches are applied to two simulated continuous state- and action-space control problems: Cart-Pole and double Cart-Pole. The results are compared both in terms of action selection time and the number of trials required to train on the benchmark problems.
连续动作空间中隐式策略方法强化学习的动作选择方法比较
在本文中,我研究了将强化学习应用于没有策略函数的连续状态和动作空间问题的方法。我比较了四种方法的性能,其中一种是动作空间的离散化,另外三种是用于在没有离散化的情况下寻找贪婪动作的优化技术。我使用的优化方法有梯度下降法、奈德-米德法和牛顿法。动作选择方法与SARSA算法结合使用,并使用多层感知器来逼近值函数。将该方法应用于两个模拟的连续状态和动作空间控制问题:Cart-Pole和双Cart-Pole。结果在动作选择时间和训练基准问题所需的试验次数方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信