Soft-Decision List Decoding with Linear Complexity for the First-Order Reed-Muller Codes

I. Dumer, G. Kabatiansky, C. Tavernier
{"title":"Soft-Decision List Decoding with Linear Complexity for the First-Order Reed-Muller Codes","authors":"I. Dumer, G. Kabatiansky, C. Tavernier","doi":"10.1109/ISIT.2007.4557410","DOIUrl":null,"url":null,"abstract":"Soft-decision decoding on a memoryless channel is considered for the first-order Reed-Muller codes RM(1,m) of length 2m. We assume that different positions j of the received binary vector y can be corrupted by the errors of varying weight Wj. The generalized Hamming distance between vector y and any binary vector c is then defined as the sum of weighted differences Wj|yj - Cj| taken over all n positions. We obtain a tight upper bound Lt on the number of codewords located within generalized Hamming distance T from vector y, and design a decoding algorithm that outputs this list of codewords with complexity O(n In2 Lt)- In particular, all possible error weights wj equal 1 if this combinatorial model is applied to a binary symmetric channel. In this case, the well known Green algorithm performs full maximum likelihood decoding of RM(1,m) and requires O(n ln2 n) bit operations, whereas the Litsyn-Shekhovtsov algorithm operates within the bounded-distance decoding radius n/4 - 1 with linear complexity O(n). We close the performance-complexity gap between the two algorithms. Namely, for any fixed epsi isin (0, frac12), our algorithm outputs the complete list of codewords within the decoding radius n(frac12 - epsi) with linear complexity of order n ln2 epsi.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"7 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Soft-decision decoding on a memoryless channel is considered for the first-order Reed-Muller codes RM(1,m) of length 2m. We assume that different positions j of the received binary vector y can be corrupted by the errors of varying weight Wj. The generalized Hamming distance between vector y and any binary vector c is then defined as the sum of weighted differences Wj|yj - Cj| taken over all n positions. We obtain a tight upper bound Lt on the number of codewords located within generalized Hamming distance T from vector y, and design a decoding algorithm that outputs this list of codewords with complexity O(n In2 Lt)- In particular, all possible error weights wj equal 1 if this combinatorial model is applied to a binary symmetric channel. In this case, the well known Green algorithm performs full maximum likelihood decoding of RM(1,m) and requires O(n ln2 n) bit operations, whereas the Litsyn-Shekhovtsov algorithm operates within the bounded-distance decoding radius n/4 - 1 with linear complexity O(n). We close the performance-complexity gap between the two algorithms. Namely, for any fixed epsi isin (0, frac12), our algorithm outputs the complete list of codewords within the decoding radius n(frac12 - epsi) with linear complexity of order n ln2 epsi.
一阶Reed-Muller码的线性复杂度软判决表译码
考虑了长度为2m的一阶Reed-Muller码RM(1,m)在无记忆信道上的软判决译码。我们假设接收到的二进制向量y的不同位置j可以被不同权重Wj的误差所破坏。然后将向量y与任意二进制向量c之间的广义汉明距离定义为所有n个位置的加权差Wj|yj - Cj|的和。我们获得了位于向量y的广义汉明距离T内的码字数的紧上界Lt,并设计了一种解码算法,该算法以复杂度O(n In2 Lt)输出该码字列表-特别是,如果将该组合模型应用于二进制对称信道,则所有可能的误差权重wj等于1。在这种情况下,众所周知的Green算法对RM(1,m)进行全最大似然解码,需要O(n ln2 n)位操作,而Litsyn-Shekhovtsov算法在有界距离解码半径n/4 - 1内运行,线性复杂度为O(n)。我们缩小了两种算法之间的性能复杂度差距。即,对于任意固定的epsi isin (0, frac12),我们的算法输出解码半径n(frac12 - epsi)内的码字完整列表,其线性复杂度为n ln2 epsi阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信