{"title":"Error Exponents of the Dirty-Paper and Gel’fand-Pinsker Channels","authors":"Ran Tamir, N. Merhav","doi":"10.1109/ITW55543.2023.10161668","DOIUrl":null,"url":null,"abstract":"We derive various error exponents for communication channels with random states, which are available non-causally at the encoder only. For both the finite-alphabet Gel’fand-Pinsker channel and its Gaussian counterpart, the dirty-paper channel, we derive random coding exponents, error exponents of the typical random codes (TRCs), and error exponents of expurgated codes. For the two channel models, we analyze some sub-optimal bin-index decoders, which turn out to be asymptotically optimal, at least for the random coding error exponent. For the dirty-paper channel, we show explicitly via a numerical example, that at rates below capacity, the optimal values of the dirty-paper design parameter α in the random coding sense and in the TRC exponent sense are different from one another, and they are both different from the optimal α that is required for attaining the channel capacity. For the Gel’fand-Pinsker channel, we allow for a variable-rate random binning code construction, and prove that the previously proposed maximum penalized mutual information decoder is asymptotically optimal within a given class of decoders, at least for the random coding error exponent.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We derive various error exponents for communication channels with random states, which are available non-causally at the encoder only. For both the finite-alphabet Gel’fand-Pinsker channel and its Gaussian counterpart, the dirty-paper channel, we derive random coding exponents, error exponents of the typical random codes (TRCs), and error exponents of expurgated codes. For the two channel models, we analyze some sub-optimal bin-index decoders, which turn out to be asymptotically optimal, at least for the random coding error exponent. For the dirty-paper channel, we show explicitly via a numerical example, that at rates below capacity, the optimal values of the dirty-paper design parameter α in the random coding sense and in the TRC exponent sense are different from one another, and they are both different from the optimal α that is required for attaining the channel capacity. For the Gel’fand-Pinsker channel, we allow for a variable-rate random binning code construction, and prove that the previously proposed maximum penalized mutual information decoder is asymptotically optimal within a given class of decoders, at least for the random coding error exponent.