Error Exponents of the Dirty-Paper and Gel’fand-Pinsker Channels

Ran Tamir, N. Merhav
{"title":"Error Exponents of the Dirty-Paper and Gel’fand-Pinsker Channels","authors":"Ran Tamir, N. Merhav","doi":"10.1109/ITW55543.2023.10161668","DOIUrl":null,"url":null,"abstract":"We derive various error exponents for communication channels with random states, which are available non-causally at the encoder only. For both the finite-alphabet Gel’fand-Pinsker channel and its Gaussian counterpart, the dirty-paper channel, we derive random coding exponents, error exponents of the typical random codes (TRCs), and error exponents of expurgated codes. For the two channel models, we analyze some sub-optimal bin-index decoders, which turn out to be asymptotically optimal, at least for the random coding error exponent. For the dirty-paper channel, we show explicitly via a numerical example, that at rates below capacity, the optimal values of the dirty-paper design parameter α in the random coding sense and in the TRC exponent sense are different from one another, and they are both different from the optimal α that is required for attaining the channel capacity. For the Gel’fand-Pinsker channel, we allow for a variable-rate random binning code construction, and prove that the previously proposed maximum penalized mutual information decoder is asymptotically optimal within a given class of decoders, at least for the random coding error exponent.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We derive various error exponents for communication channels with random states, which are available non-causally at the encoder only. For both the finite-alphabet Gel’fand-Pinsker channel and its Gaussian counterpart, the dirty-paper channel, we derive random coding exponents, error exponents of the typical random codes (TRCs), and error exponents of expurgated codes. For the two channel models, we analyze some sub-optimal bin-index decoders, which turn out to be asymptotically optimal, at least for the random coding error exponent. For the dirty-paper channel, we show explicitly via a numerical example, that at rates below capacity, the optimal values of the dirty-paper design parameter α in the random coding sense and in the TRC exponent sense are different from one another, and they are both different from the optimal α that is required for attaining the channel capacity. For the Gel’fand-Pinsker channel, we allow for a variable-rate random binning code construction, and prove that the previously proposed maximum penalized mutual information decoder is asymptotically optimal within a given class of decoders, at least for the random coding error exponent.
脏纸通道和凝胶通道的误差指数
我们推导了具有随机状态的通信信道的各种误差指数,这些信道只能在编码器上非因果地可用。对于有限字母的Gel’fand- pinsker信道及其对应的高斯信道脏纸信道,我们推导了随机编码指数、典型随机码(TRCs)的误差指数和删除码的误差指数。对于这两种信道模型,我们分析了一些次优的双索引解码器,它们至少在随机编码误差指数上是渐近最优的。对于脏纸通道,我们通过一个数值例子明确地表明,在低于容量的速率下,随机编码意义上的脏纸设计参数α和TRC指数意义上的脏纸设计参数α的最优值彼此不同,它们都不同于获得通道容量所需的最优α。对于Gel 'fand-Pinsker信道,我们允许可变速率的随机分组编码结构,并证明了先前提出的最大惩罚互信息解码器在给定的解码器类别中是渐近最优的,至少对于随机编码错误指数是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信