Visual analysis and coding of data-rich user behavior

Tanja Blascheck, Fabian Beck, Sebastian Baltes, T. Ertl, D. Weiskopf
{"title":"Visual analysis and coding of data-rich user behavior","authors":"Tanja Blascheck, Fabian Beck, Sebastian Baltes, T. Ertl, D. Weiskopf","doi":"10.1109/VAST.2016.7883520","DOIUrl":null,"url":null,"abstract":"Investigating user behavior involves abstracting low-level events to higher-level concepts. This requires an analyst to study individual user activities, assign codes which categorize behavior, and develop a consistent classification scheme. To better support this reasoning process of an analyst, we suggest a novel visual analytics approach which integrates rich user data including transcripts, videos, eye movement data, and interaction logs. Word-sized visualizations embedded into a tabular representation provide a space-efficient and detailed overview of user activities. An analyst assigns codes, grouped into code categories, as part of an interactive process. Filtering and searching helps to select specific activities and focus an analysis. A comparison visualization summarizes results of coding and reveals relationships between codes. Editing features support efficient assignment, refinement, and aggregation of codes. We demonstrate the practical applicability and usefulness of our approach in a case study and describe expert feedback.","PeriodicalId":357817,"journal":{"name":"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2016.7883520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Investigating user behavior involves abstracting low-level events to higher-level concepts. This requires an analyst to study individual user activities, assign codes which categorize behavior, and develop a consistent classification scheme. To better support this reasoning process of an analyst, we suggest a novel visual analytics approach which integrates rich user data including transcripts, videos, eye movement data, and interaction logs. Word-sized visualizations embedded into a tabular representation provide a space-efficient and detailed overview of user activities. An analyst assigns codes, grouped into code categories, as part of an interactive process. Filtering and searching helps to select specific activities and focus an analysis. A comparison visualization summarizes results of coding and reveals relationships between codes. Editing features support efficient assignment, refinement, and aggregation of codes. We demonstrate the practical applicability and usefulness of our approach in a case study and describe expert feedback.
数据丰富的用户行为的可视化分析和编码
调查用户行为涉及将低级事件抽象为高级概念。这需要分析人员研究单个用户活动,分配对行为进行分类的代码,并开发一致的分类方案。为了更好地支持分析师的推理过程,我们建议采用一种新颖的可视化分析方法,该方法集成了丰富的用户数据,包括成绩单、视频、眼动数据和交互日志。嵌入到表格表示中的单词大小的可视化提供了节省空间和详细的用户活动概览。分析人员分配代码,将代码分类,作为交互过程的一部分。过滤和搜索有助于选择特定的活动并集中分析。比较可视化总结了编码的结果,并揭示了代码之间的关系。编辑特性支持有效的代码分配、细化和聚合。我们在一个案例研究中展示了我们的方法的实际适用性和有用性,并描述了专家的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信