Hardware evolution of analog circuits for in-situ robotic fault-recovery

D. Berenson, N. Estévez, Hod Lipson
{"title":"Hardware evolution of analog circuits for in-situ robotic fault-recovery","authors":"D. Berenson, N. Estévez, Hod Lipson","doi":"10.1109/EH.2005.30","DOIUrl":null,"url":null,"abstract":"We present a method for evolving and implementing artificial neural networks (ANNs) on field programmable analog arrays (FPAAs). These FPAAs offer the small size and low power usage desirable for space applications. We use two cascaded FPAAs to create a two layer ANN. Then, starting from a population of random settings for the network, we are able to evolve an effective controller for several different robot morphologies. We demonstrate the effectiveness of our method by evolving two types of ANN controllers: one for biped locomotion and one for restoration of mobility to a damaged quadruped. Both robots exhibit nonlinear properties, making them difficult to control. All candidate controllers are evaluated in hardware; no simulation is used.","PeriodicalId":448208,"journal":{"name":"2005 NASA/DoD Conference on Evolvable Hardware (EH'05)","volume":"5 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 NASA/DoD Conference on Evolvable Hardware (EH'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2005.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We present a method for evolving and implementing artificial neural networks (ANNs) on field programmable analog arrays (FPAAs). These FPAAs offer the small size and low power usage desirable for space applications. We use two cascaded FPAAs to create a two layer ANN. Then, starting from a population of random settings for the network, we are able to evolve an effective controller for several different robot morphologies. We demonstrate the effectiveness of our method by evolving two types of ANN controllers: one for biped locomotion and one for restoration of mobility to a damaged quadruped. Both robots exhibit nonlinear properties, making them difficult to control. All candidate controllers are evaluated in hardware; no simulation is used.
原位机器人故障恢复模拟电路的硬件演化
我们提出了一种在现场可编程模拟阵列(FPAAs)上进化和实现人工神经网络(ann)的方法。这些fpaa为空间应用提供了理想的小尺寸和低功耗。我们使用两个级联的fpaa来创建两层神经网络。然后,从网络的随机设置种群开始,我们能够针对几种不同的机器人形态进化出有效的控制器。我们通过进化两种类型的人工神经网络控制器来证明我们方法的有效性:一种用于两足运动,另一种用于恢复损坏的四足运动。这两种机器人都表现出非线性特性,使它们难以控制。所有候选控制器都在硬件中进行评估;没有使用模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信