Mesh Based Parallel Algorithm for Finite Exponential Function

A. Gupta
{"title":"Mesh Based Parallel Algorithm for Finite Exponential Function","authors":"A. Gupta","doi":"10.1109/ACCT.2012.68","DOIUrl":null,"url":null,"abstract":"Mapping of mathematical equations on parallel architectures always been an interesting area among researchers. Many researchers implements parallel algorithm for mathematical equations such as Lagranges interpolation, Polynomial interpolation Hermit interpolation etc on different interconnection networks. In this paper we present a Mesh based parallel algorithm for finite exponential series, however the number of terms in exponential series should be equal to n2 +1. This parallel algorithm requires 10(n-1) + O(1) steps for computing finite exponential series of n2 + 1 terms.","PeriodicalId":396313,"journal":{"name":"2012 Second International Conference on Advanced Computing & Communication Technologies","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Advanced Computing & Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCT.2012.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mapping of mathematical equations on parallel architectures always been an interesting area among researchers. Many researchers implements parallel algorithm for mathematical equations such as Lagranges interpolation, Polynomial interpolation Hermit interpolation etc on different interconnection networks. In this paper we present a Mesh based parallel algorithm for finite exponential series, however the number of terms in exponential series should be equal to n2 +1. This parallel algorithm requires 10(n-1) + O(1) steps for computing finite exponential series of n2 + 1 terms.
有限指数函数的网格并行算法
数学方程在并行结构上的映射一直是研究人员感兴趣的领域。许多研究者在不同的互连网络上实现了数学方程的并行算法,如拉格朗日插值、多项式插值、隐士插值等。本文提出了一种基于网格的有限指数级数并行算法,但指数级数的项数必须等于n2 +1。该并行算法需要10(n-1) + O(1)步来计算n2 + 1项的有限指数级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信