Symbolic-Numeric Factorization of Differential Operators

F. Chyzak, Alexandre Goyer, M. Mezzarobba
{"title":"Symbolic-Numeric Factorization of Differential Operators","authors":"F. Chyzak, Alexandre Goyer, M. Mezzarobba","doi":"10.1145/3476446.3535503","DOIUrl":null,"url":null,"abstract":"We present a symbolic-numeric Las Vegas algorithm for factoring Fuchsian ordinary differential operators with rational function coefficients. The new algorithm combines ideas of van Hoeij's \"local-to-global\" method and of the \"analytic\" approach proposed by van der Hoeven. It essentially reduces to the former in \"easy\" cases where the local-to-global method succeeds, and to an optimized variant of the latter in the \"hardest\" cases, while handling intermediate cases more efficiently than both.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a symbolic-numeric Las Vegas algorithm for factoring Fuchsian ordinary differential operators with rational function coefficients. The new algorithm combines ideas of van Hoeij's "local-to-global" method and of the "analytic" approach proposed by van der Hoeven. It essentially reduces to the former in "easy" cases where the local-to-global method succeeds, and to an optimized variant of the latter in the "hardest" cases, while handling intermediate cases more efficiently than both.
微分算子的符号-数值分解
提出了一种具有有理函数系数的Fuchsian常微分算子的符号-数值Las Vegas算法。新算法结合了van Hoeij的“局部到全局”方法和van der Hoeven提出的“解析”方法的思想。在局部到全局方法成功的“简单”情况下,它本质上简化为前者,在“最难”情况下,它简化为后者的优化变体,同时比两者更有效地处理中间情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信