Network anomaly detection using artificial neural networks

Sergey Andropov, A. Guirik, M. Budko, M. Budko
{"title":"Network anomaly detection using artificial neural networks","authors":"Sergey Andropov, A. Guirik, M. Budko, M. Budko","doi":"10.23919/FRUCT.2017.8071288","DOIUrl":null,"url":null,"abstract":"This paper presents a method of identifying and classifying network anomalies using an artificial neural network for analyzing data gathered via Netflow protocol. Potential anomalies and their properties are described. We propose using a multilayer perceptron, trained with the backpropagation algorithm. We experiment both with datasets acquired from a real ISP monitoring system and with datasets modified to simulate the presence of anomalies; some Netflow records are modified to contain known patterns of several network attacks. We evaluate the viability of the approach by practical experimentation with various anomalies and iteration sizes.","PeriodicalId":114353,"journal":{"name":"2017 20th Conference of Open Innovations Association (FRUCT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2017.8071288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a method of identifying and classifying network anomalies using an artificial neural network for analyzing data gathered via Netflow protocol. Potential anomalies and their properties are described. We propose using a multilayer perceptron, trained with the backpropagation algorithm. We experiment both with datasets acquired from a real ISP monitoring system and with datasets modified to simulate the presence of anomalies; some Netflow records are modified to contain known patterns of several network attacks. We evaluate the viability of the approach by practical experimentation with various anomalies and iteration sizes.
利用人工神经网络进行网络异常检测
本文提出了一种利用人工神经网络对Netflow协议采集的数据进行识别和分类的方法。描述了潜在异常及其性质。我们建议使用多层感知器,用反向传播算法训练。我们对从真实ISP监控系统获取的数据集进行了实验,并对数据集进行了修改以模拟异常的存在;一些Netflow记录被修改以包含已知的几种网络攻击模式。我们通过各种异常和迭代大小的实际实验来评估该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信