{"title":"Network anomaly detection using artificial neural networks","authors":"Sergey Andropov, A. Guirik, M. Budko, M. Budko","doi":"10.23919/FRUCT.2017.8071288","DOIUrl":null,"url":null,"abstract":"This paper presents a method of identifying and classifying network anomalies using an artificial neural network for analyzing data gathered via Netflow protocol. Potential anomalies and their properties are described. We propose using a multilayer perceptron, trained with the backpropagation algorithm. We experiment both with datasets acquired from a real ISP monitoring system and with datasets modified to simulate the presence of anomalies; some Netflow records are modified to contain known patterns of several network attacks. We evaluate the viability of the approach by practical experimentation with various anomalies and iteration sizes.","PeriodicalId":114353,"journal":{"name":"2017 20th Conference of Open Innovations Association (FRUCT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2017.8071288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper presents a method of identifying and classifying network anomalies using an artificial neural network for analyzing data gathered via Netflow protocol. Potential anomalies and their properties are described. We propose using a multilayer perceptron, trained with the backpropagation algorithm. We experiment both with datasets acquired from a real ISP monitoring system and with datasets modified to simulate the presence of anomalies; some Netflow records are modified to contain known patterns of several network attacks. We evaluate the viability of the approach by practical experimentation with various anomalies and iteration sizes.