Gaining Big Picture Awareness through an Interconnected Cross-Layer Situation Knowledge Reference Model

Jun Dai, Xiaoyan Sun, Peng Liu, N. Giacobe
{"title":"Gaining Big Picture Awareness through an Interconnected Cross-Layer Situation Knowledge Reference Model","authors":"Jun Dai, Xiaoyan Sun, Peng Liu, N. Giacobe","doi":"10.1109/CyberSecurity.2012.18","DOIUrl":null,"url":null,"abstract":"In both military operations and the commercial world, cyber situation awareness (SA) is a key element of mission assurance. Due to the needs for mission damage and impact assessment and asset identification (and prioritization), cyber SA is beyond intrusion detection and attack graph analysis. In this paper, we propose a cross-layer situation knowledge reference model (SKRM) to address the unique cyber SA needs of real-world missions. SKRM provides new insight on how to break the \"stovepipes\" created by isolated situation knowledge collectors and gain comprehensive level big picture awareness. Through a concrete case study, we show that SKRM is the key enabler for two SA capabilities beyond intrusion detection and aintrusionttack graph analysis. The potentials and the current limitations of SKRM and SKRM-enabled analysis are also discussed.","PeriodicalId":162858,"journal":{"name":"2012 International Conference on Cyber Security","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberSecurity.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In both military operations and the commercial world, cyber situation awareness (SA) is a key element of mission assurance. Due to the needs for mission damage and impact assessment and asset identification (and prioritization), cyber SA is beyond intrusion detection and attack graph analysis. In this paper, we propose a cross-layer situation knowledge reference model (SKRM) to address the unique cyber SA needs of real-world missions. SKRM provides new insight on how to break the "stovepipes" created by isolated situation knowledge collectors and gain comprehensive level big picture awareness. Through a concrete case study, we show that SKRM is the key enabler for two SA capabilities beyond intrusion detection and aintrusionttack graph analysis. The potentials and the current limitations of SKRM and SKRM-enabled analysis are also discussed.
通过相互关联的跨层情境知识参考模型获得全局意识
在军事行动和商业世界中,网络态势感知(SA)是任务保证的关键要素。由于任务损害和影响评估以及资产识别(和优先级)的需要,网络SA超出了入侵检测和攻击图分析的范围。在本文中,我们提出了一种跨层情境知识参考模型(SKRM)来解决现实世界任务的独特网络SA需求。SKRM为如何打破孤立情况知识收集者创造的“烟囱”并获得全面的大局意识提供了新的见解。通过一个具体的案例研究,我们表明SKRM是入侵检测和入侵攻击图分析之外的两个SA功能的关键推动者。还讨论了SKRM和SKRM支持的分析的潜力和当前的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信